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KOEBE DOMAINS FOR THE CLASS OF TYPICALLY
REAL ODD FUNCTIONS

L. Koczan, P. Zaprawa

In this paper we discuss the generalized Koebe domains for the
class T (2) and the set D ⊂ ∆ = {z ∈ C : |z| < 1}, i.e. the sets of
the form

⋂
f∈TM

f(D). The main idea we work with is the method
of the envelope. We determine the Koebe domains for H = {z ∈
∆ : |z2 + 1| > 2|z|} and for special sets Ωα, α ≤ 4

3
. It appears that

the set Ω 4
3
is the largest subset of ∆ for which one can compute

the Koebe domain with the use of this method. It means that the
set KT (2)(Ω 4

3
) ∪ KT (∆) is the largest subset of the still unknown

set KT (2)(∆) which we are able to derive.

Introduction

Let A denote the set of all functions which are analytic in the unit
disk ∆ = {z ∈ C : |z| < 1} and normalized by f(0) = f ′(0)− 1 = 0. The
notion of the Koebe domain was generalized in [5] as follows. For a given
class A ⊂ A and for a given domain D ⊂ ∆, a set

⋂

f∈A

f(D)

is called the Koebe domain for the class A and the set D. We denote this
set by KA(D).

It is easy to observe that if a compact class A has the property

f ∈ A iff e−iϕf(zeiϕ) ∈ A for each ϕ ∈ R, (1)
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and D = ∆r = {z ∈ C : |z| < r}, r ∈ (0, 1], then KA(∆r) is a disk with the
center in the origin. Moreover, if all functions belonging to A are univalent
in ∆r then the radius of this disk is equal to min{|f(z)| : f ∈ A, |z| = r}.

The property (1) does not hold in classes consisting of functions with
real coefficients, for example in the class of typically real functions

T = {f ∈ A : Im‡Im{(‡) ≥ ′, ‡ ∈ ·} . (2)

We use the notation:
S = {f ∈ A : { is univalent in ∆},
AR = {f ∈ A : f has real coefficients},
〈〈a, b〉〉 - a line segment connecting a, b ∈ C,
(A) - a closure of A,
int(A) - an interior of A.

Koebe domains have a few simple properties.

Theorem A [5]. For a fixed compact class A ⊂ A the following properties
of KA(D) are true:

1. if A satisfies (1) and A ⊂ S then KA(∆r) = ∆m(r), where m(r) =
min{|f(z)| : f ∈ A, z ∈ ∂∆r};

2. if A ⊂ AR and D is symmetric with respect to the real axis then
KA(D) is symmetric with respect to the real axis;

3. if A ⊂ AR, f ∈ A ⇐⇒ −f(−z) ∈ A, and D is symmetric with
respect to both axes then KA(D) is symmetric with respect to both
axes;

4. if D1 ⊂ D2 then KA(D1) ⊂ KA(D2);
5. if A1, A2 ⊂ A and A1 ⊂ A2 then KA2(D) ⊂ KA1(D).

In [3] classes of typically real functions with n-fold symmetry were
discussed, i.e.

T (n) = {f ∈ T : f(εz) = εf(z), z ∈ ∆},

where ε = e
2πi
n , n ∈ N , n ≥ 2. The main result of this paper is

Theorem B [3]. For k ∈ N we have

T (2k−1) = {f : f(z) = 2k−1

√
g(z2k−1), g ∈ T},

T (2k) = {f : f(z) = k

√
g(zk), g ∈ T (2)}.
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According to this theorem, the Koebe domains for T (n) can be deter-
mined by the relation

KT (2k−1)(D) = {z : z2k−1 ∈ KT (D)},

KT (2k)(D) = {z : zk ∈ KT (2)(D)}.
Results concerning the class T were obtained in [5]. In order to determine
the Koebe domains also for T (n), while n is odd, we need to know these
domains for the class T (2).

Koebe domains for T (2)

It is known (see for example [3]) that each function T (2) can be repre-
sented in the integral form by

f(z) =
∫ 1

0

z(1 + z2)
(1 + z2)2 − 4z2t

dµ(t), (3)

where µ ∈ P[0,1], i.e. µ is a probability measure on [0, 1].
While researching T (2) it is useful to work with functions

g(w) =
∫ 1

0

w

w2 − 4t
dµ(t), (4)

for which f(z) = g(z + 1
z ).

Let T (∈) denote a class of functions given by (4), i.e.

T (∈) = {} : }(w) =
∫ ∞

′

w
w∈ −4tdµ(t) , w ∈ C \ [−∈,∈] , µ ∈ P[′,∞]} .

For z 6= 0 let z+ 1
z = w, |w| = %, arg w = ϕ. The set {g(w) : g ∈ T (∈)}

is a convex hull of the curve [0, 1] 3 t 7→ w
w2−4t (see for example [1]). It

is easy to observe that if w is a point of real or imaginary axis then the
set {g(w) : g ∈ T (∈)} coincides with a segment 〈〈 1

w , w
w2−4 〉〉 included in

this axis. Otherwise, the boundary of the set {g(w) : g ∈ T (∈)} consists
of the arc of the circle

∣∣∣∣w − 1
4%

(
1

cosϕ
− i

1
sin ϕ

)∣∣∣∣ =
∣∣∣∣

1
4%

(
1

cosϕ
− i

1
sin ϕ

)∣∣∣∣ (5)
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having end points 1
%e−iϕ and %eiϕ

%2e2iϕ−4 and not containing 0, and the line

segment 〈〈 1
%e−iϕ, %eiϕ

%2e2iϕ−4 〉〉. We conclude from this fact that min{|g(w)| :
g ∈ T (∈), arg }(w) = β}, β ∈ [′, π

∈ ] is achieved by functions

gε(w) = (1− ε)
1
w

+ ε
w

w2 − 4
, w ∈ C \ [−2, 2] , ε ∈ [0, 1]. (6)

In terms of function f ∈ T (2), the minimum of {|f(z)| : f ∈ T (2), arg f(z) =
β}, β ∈ [0, π

2 ], is achieved by functions

fε(z) = (1− ε)
z

1 + z2
+ ε

z(1 + z2)
(1− z2)2

, z ∈ ∆ , ε ∈ [0, 1], (7)

which correspond with functions (6).
We begin with finding the Koebe domain for T (2) and the lens H =

{z ∈ ∆ : |z2 +1| > 2|z|}. The set H, as it is known, has special properties.
Firstly, H is the domain of univalence of T [2]. Secondly, it is the only
domain of univalence of T (2) that is symmetric with respect to both axes
of the complex plane.

We know from [5] that KT (H) = ∆ 1
4
. By Theorem A point 4, KT (2)(H) ⊃

KT (H). The boundary of KT (H) consists of images of some points be-
longing to the boundary of H under the functions

f(z) = ε
z

(1− z)2
+ (1− ε)

z

(1 + z)2
, ε ∈ [0, 1].

Since these functions are not in T (2) while ε 6= 1
2 , ∆ 1

4
is a proper subset of

KT (2)(H). Furthermore, z = 1
4 i and z = − 1

4 i are the only common points
of KT (H) and KT (2)(H).

Theorem 1. The set KT (2)(H) is a bounded domain, whose boundary
is the curve Ψ((−π, π]), where

Ψ(ϕ) =
1
2

cos3 ϕ + i
1
2
(
3
2
− sin2 ϕ) sin ϕ , ϕ ∈ (−π, π]. (8)

Proof. All functions of T (2) are univalent in H. Hence

KT (2)(H) =
⋂

0≤ε≤1

fε(H).
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In order to determine the set KT (2)(H) we will derive the envelope of the
family of segments 〈〈f0(z), f1(z)〉〉, while z ranges over the whole boundary
of H. After that we will prove that this envelope is in fact the boundary
of KT (2)(H). Basing on Theorem A point 2 we can restrict determining
the envelope to the first quadrant of the complex plane.

Let z ∈ ∂H ∩ {z : Imz > 0}, which is equivalent to w = z + 1
z =

2eiϕ , ϕ ∈ (−π, 0). Observe that for these z

g1(w) =
w

w2 − 4
=

1
4i sin ϕ

and
g0(w) =

1
w

=
1
2
e−iϕ.

Straight lines going through points g0(w) and g1(w) for a fixed w =
2eiϕ , ϕ ∈ (−π, 0) are of the form

wϕ(t) =
1
2
e−iϕ + t

[
− i

4 sin ϕ
− 1

2
e−iϕ

]
, t ∈ R , ϕ ∈ (−π, 0). (9)

These lines are pairwise symmetric with respect to the imaginary axis
(namely, for all t ∈ R and ϕ ∈ (−π, 0) we have w−π−ϕ(t) = −wϕ(t) ).
Therefore, the envelope is symmetric with respect to the imaginary axis.
This is a reason why we can restrict the set of variability of ϕ to the
interval (−π

2 , 0). The line {w−π
2
(t) : t ∈ R} coincides with the imaginary

axis.
The straight lines (9) can be written equivalently

x cot 2ϕ− y − 1
4 sin ϕ

= 0 , ϕ ∈
(
−π

2
, 0

)
.

From the system {
x cot 2ϕ− y − 1

4 sin ϕ = 0
x −2

sin2 2ϕ
+ cos ϕ

4 sin2 ϕ
= 0

we derive the equation of the envelope of lines (9) in the first quadrant

x =
1
2

cos3 ϕ, y = −1
2
(
3
2
− sin2 ϕ) sin ϕ,ϕ ∈ (−π

2
, 0). (10)

Let W (ϕ) = 1
2 cos3 ϕ− i 1

2 ( 3
2 − sin2 ϕ) sin ϕ , ϕ ∈ (−π

2 , 0).
Observe that

arg W (ϕ) < arg
1

4i sinϕ
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and
arg W (ϕ) > arg

1
2
e−iϕ,

where the argument in the above is taken from (−π, π].
The first inequality is obvious. The second one is equivalent to

3
2 − sin2 ϕ

cos2 ϕ
tan ϕ < tan ϕ,

which is true for ϕ ∈ (−π
2 , 0).

Hence, the curve (10) is the envelope of the family of the straight
lines (9) for ϕ ∈ (−π

2 , 0), as well as the envelope of the family of the line
segments 〈〈g0(2eiϕ), g1(2eiϕ)〉〉 while ϕ ∈ (−π

2 , 0).
Putting ϕ = 0 into (10) we get the point 1

2 = f0(1) = g0(2), and
putting ϕ = −π

2 we obtain 1
4 i = f1(i(

√
2− 1)) = g1(−2i).

It follows from arg[g1(2eiϕ)− g0(2eiϕ)] = −2ϕ + π
2 that this argument

is a decreasing function of ϕ ∈ (−π
2 , 0). Therefore, the bounded domain D

for which the curve (10) and the intervals [0, 1
2 ] and [0, 1

4 i] are its boundary
is convex. Hence, each set {f(z) : f ∈ T (2)} for z ∈ ∂H ∩ {z : Rez ≥
0, Imz ≥ 0}, which is the same as {g(2eiϕ) : g ∈ T (∈)} for ϕ ∈ [−π

2 , 0] is
disjoint from D (has exactly one common point with the closure of the
curve (10)). It means that D ⊂ f(H ∩ {z : Rez ≥ 0, Imz ≥ 0}) for each
f ∈ T (2).

Taking the interval (−π, π] instead of (−π
2 , 0) in (10) we obtain a curve

which is closed and symmetric with respect to both axes. Let us denote
by E the set which has this curve as a boundary and which contains the
origin.

From the above argument it follows that E ⊂ f(H) for each f ∈ T (2).
Since

E ⊂
⋂

f∈T (2)

f(H) ⊂
⋂

ε∈[0,1]

fε(H) = E ,

we have E = KT (2)(H). 2

Substituting cosϕ by 3
√

2x in (10) one can write the equation of the
boundary of KT (2)(H) in the form

y2 =
1
4

(
1− 3

√
4x2

) (
1
2

+ 3
√

4x2

)2

.
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Now, we consider some special sets Ωα for which we determine Koebe
domains. After that we will be able to indicate the largest Koebe domain
for T (2) and some set D which will be possible to determine applying the
method of the envelope.

We need the following notation:

l(z) = z + 1
z , z ∈ ∆ \ {0}, (11)

Ωα = {z ∈ ∆ : |(z + 1
z )2 − α| > 4− α}, α ≤ 4

3 . (12)
Dα = {w : |w2 − α| > 4− α, Rew > 0, Imw > 0}, α ≤ 4

3 , (13)
Γα = {w : |w2 − α| = 4− α, Rew > 0, Imw > 0}, α ≤ 4

3 . (14)

In particular, Ω0 = H and Γ0 is the arc of the circle |w| = 2 that is
included in the first quadrant of the complex plane.

All domains Ωα, α ≤ 4
3 are symmetric with respect to both axes and

l(Ωα) ∩ {w : Rew > 0, Imw > 0} = Dα. According to [3], l−1(D 4
3
) is the

quarter of the domain of local univalence for T (2) included in the fourth
quadrant of the complex plane. It was proved in [4] that

Theorem C. Each function g ∈ T (∈) is univalent in D 4
3
.

Obviously, α < β ≤ 4
3 =⇒ Dα ⊂ Dβ . Hence, all functions g ∈ T (∈)

are univalent in every set Dα, α ≤ 4
3 .

In order to determine KT (2)(Ωα) we need the envelope of the family of
line segments 〈〈g0(w), g1(w)〉〉 for w ranging over Γα.

For w ∈ Γα we have

w =
√

α + (4− α)eiϕ , ϕ ∈ (0, π), (15)

where the branch of the square root is taken in such a way that
√

1 = 1.
Denote

Iα =
{

[2, 2− α] α < 0,
[2− α, 2] α ∈ (0, 4

3 ]

and

Ψα(p) =
2

α2(4− α)(3p2 + 2(2− α))

[
[p2 − 1

2
(3α− 4)p +

1
4
α2]×

√
α(2 + p)(p− 2 + α)3

−iα[p2 + 1
2 (3α− 4)p + 1

4α2]
√

1
α (2− p)(p + 2− α)3

]
,

(16)

where p ∈ Iα, α ∈ (−∞, 0) ∪ (0, 4
3 ].
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Theorem 2. The envelope of the straight lines going through g0(w) and
g1(w), while w is of the form (15) and α ∈ (−∞, 0)∪ (0, 4

3 ], coincides with
the curve Ψα (Iα).

Proof. Let w be of the form (15) and α ∈ (−∞, 0) ∪ (0, 4
3 ]. Denote

√
α + (4− α)eiϕ = %eiθ, (17)

where the branch of the square root is chosen as in (15).
From this we observe that θ ∈ (0, π

2 ) and that the sign of % − 2 depends
on α. Namely, for α ∈ (0, 4

3 ] we have % − 2 < 0 and for α ∈ (−∞, 0) we
have %− 2 > 0.
Applying (17) we obtain

g0(w) =
1
%

cos θ − i
1
%

sin θ

and

g1(w) =
(%− 4

% ) cos θ

%2 + 16
%2 − 8 cos 2θ

− i
(% + 4

% ) sin θ

%2 + 16
%2 − 8 cos 2θ

.

The real equation of straight lines going through g0(w) and g1(w) can be
written in the form

[4− %2(1 + 2 cos 2θ)]x tan θ + [4 + %2(1− 2 cos 2θ)]y + 2% sin θ = 0. (18)

We conclude from (17) that

%2 =
√

(4− α)2 + 2α(4− α) cos ϕ + α2,

cot 2θ =
α + (4− α) cos ϕ

(4− α) sin ϕ
.

(19)

For convenience let

p =
1
2

√
(4− α)2 + 2α(4− α) cos ϕ + α2. (20)

Hence, if ϕ ∈ [0, π] then p ∈ Iα.
From (19) we derive

%2 = 2p,
%2 cos 2θ = 2

α (p2 − 4 + 2α),
%2 sin 2θ = 2

|α|
√

(4− p2)(p2 − (2− α)2),
(21)
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and then
% cos θ = 1

|α|
√

α(p + 2)(p− 2 + α)),
% sin θ = 1

|α|
√

α(2− p)(p + 2− α)).
(22)

Applying (19) and (22) in (18) we obtain the equation equivalent to (18):
√

α(p + 2)
p− 2 + α

(4− α− 2p)x +

√
α(2− p)
p + 2− α

(4− α + 2p)y + α = 0. (23)

The envelope of the family of these lines is obtained as the solution of the
system





√
α(p+2)
p−2+α (4− α− 2p)x +

√
α(2−p)
p+2−α (4− α + 2p)y + α = 0√

p−2+α
α(p+2)

4p2+2(3α−4)p+α2

(p−2+α)2 x +
√

p+2−α
α(2−p)

−4p2+2(3α−4)p−α2

(p+2−α)2 = 0.

In this way we get the curve given by (16). 2

Remark. 1. In the limit case, taking into account limα→0 Ψα(Iα), we
obtain the curve Ψ((−π, π]) defined in Theorem 1. One can calculate this
limit putting s = p−2+α

α into the equation of Ψα (in this case s ∈ [0, 1]).
2. The curve Ψα(Iα) has one singularity for

p0 =
1
12

√
3(−112 + 80α− 9α2 +

√
(3α− 4)(27α3 − 508α2 + 3280α− 4672)

(24)
while α < −12 (if α = −12 then p0 = 2). It can be concluded from

(x′(p))2 + (y′(p))2 =

p[24p4 + (9α2 − 80α + 112)p2 − 2(2− α)(α2 − 16α + 16)]
8α(4− α)(4− p2)(3p2 + 4− 2α)4

and the fact that p0 is the only zero of this expression in (2, 2− α).
3. Using (22) one can obtain a new complex parametric equation of Γα

w(p) =
1
|α|

(√
α(p + 2)(p− 2 + α)) + i

√
α(2− p)(p + 2− α))

)
, p ∈ Iα,

(25)
which is useful in the following consideration.

First we need
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Lemma 1. Let h(p) = arg [g1(w(p))− g0(w(p))], where g0, g1 are given
by (6), the argument is taken from the interval (−2π, 0], and let w(p)
be given by (25). Then the range of h is [− 3π

2 ,−π
2 ). Moreover, if α < 0

then h is decreasing in (2, 2− α), and if α ∈ (0, 4
3 ] then h is increasing in

(2− α, 2).

Proof. Let w be defined by (15) and let k(ϕ) = arg[g1(w)− g0(w)]. The
function k is decreasing for ϕ ∈ (0, π) because

k(ϕ) = −[
1
2

arg(α + (4− α)eiϕ) + arg(eiϕ − 1)] .

.
Furthermore, by (20) for α ∈ (0, 4

3 ], p is a decreasing function of ϕ.
Hence, there exists its inverse function ϕ = ϕ(p) and it is decreasing for
p ∈ [2− α, 2]. Combining these facts, we conclude that h(p) = k(ϕ(p)) is
an increasing function for p ∈ (2− α, 2).

In the second case, for α < 0, it follows from (20) that p is an increasing
function of ϕ, and consequently, h(p) = k(ϕ(p)) is a decreasing function
for p ∈ (2− α, 2). 2

Theorem 3. The envelope of the line segments 〈〈g0(w), g1(w)〉〉, where
g0, g1 are given by (6) and w is given by (15), is a convex curve of the
form
1. Ψα ((2− α, 2)) for α ∈ (0, 4

3 ] ,
2. Ψα ((2, dα)) for α ∈ [−2, 0) ,
3. Ψα ((cα, dα)) for α ∈ (−∞,−2) ,
where Ψα is given by (16) and

cα =

√
−1

2
(2− α)α, dα =

√
1
2
(α2 − 8α + 8).

In this theorem and further on, the convexity of a curve means that
the tangent line to this curve lies below the curve.

Proof. According to Theorem 2, Ψα (Iα) , α ∈ (−∞, 0) ∪ (0, 4
3 ] is the

envelope of straight lines going through g0(w) and g1(w), w ∈ Γα.
This curve (whole or only a part of it) is also the envelope of line

segments 〈〈g0(w), g1(w)〉〉, but only for these p which satisfy the inequality

arg g1(w(p)) ≤ arg Ψα(p) ≤ arg g0(w(p)) , p ∈ Iα. (26)
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For w ∈ Γα (w is of the form (15)) we have

arg g1(w) = arg[(%2 − 4) cos θ − i(%2 + 4) sin θ],
arg g0(w) = arg[cos θ − i sin θ] = −θ.

(27)

Let α ∈ (0, 4
3 ] and let Ψα be given by (16).

It follows from (27) that arg g1(w) ∈ (−π,−π
2 ) and arg g0(w) ∈ (−π

2 , 0).
Moreover, arg Ψα(p) ∈ (−π

2 , 0) for p ∈ (2 − α, 2). Since the left hand
side of (26) is fulfilled, it is sufficient to discuss only the right hand side
inequality. We rewrite it as follows

p2 + 1
2 (3α− 4)p + 1

4α2

p2 − 1
2 (3α− 4)p + 1

4α2

√
(2− p)(p + 2− α)3

(2 + p)(p− 2 + α)3
≥

√
(2− p)(p + 2− α)
(2 + p)(p− 2 + α)

and equivalently

[p2 +
1
2
(3α− 4)p +

1
4
α2](p + 2−α) ≥ [p2− 1

2
(3α− 4)p +

1
4
α2](p− 2 + α),

and further on
p2 +

1
2
α(2− α) ≥ 0,

which holds for α ∈ (0, 4
3 ] and p ∈ [2− α, 2].

Therefore, the inequality(26) is true for α ∈ (0, 4
3 ] and w ∈ Γα. We con-

clude from this that the curve Ψα(Iα) is really the envelope of line seg-
ments 〈〈g0(w), g1(w)〉〉 for α ∈ (0, 4

3 ].
Let now α ∈ (−∞, 0) and w ∈ Γα.

From (27) we obtain arg g1(w) ∈ (−π
2 , 0) and arg g0(w) ∈ (−π

2 , 0). The
left hand side of (26) is equivalent to

−p2 + 1
2 (3α− 4)p + 1

4α2

p2 − 1
2 (3α− 4)p + 1

4α2

√
(2− p)(p + 2− α)3

(2 + p)(p− 2 + α)3
≤

p + 2
p− 2

√
(2− p)(p + 2− α)
(2 + p)(p− 2 + α)

and then

−[p2 +
1
2
(3α− 4)p +

1
4
α2][−p2 + αp− 2(2− α)]
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≥ [p2 − 1
2
(3α− 4)p +

1
4
α2][p2 + αp− 2(2− α)].

After simple calculations it takes form

(4− α)p[p2 − 1
2
(α2 − 8α + 8)] ≥ 0. (28)

The inequality (28), and in consequence, the inequality arg g1(w) ≤ arg Ψα(p)

holds only for p ∈ [2,
√

1
2 (α2 − 8α + 8)] because of 2 <√

1
2 (α2 − 8α + 8) < 2− α.
The right hand side of (26) turns to

p2 + 1
2 (3α− 4)p + 1

4α2

p2 − 1
2 (3α− 4)p + 1

4α2

√
(2− p)(p + 2− α)3

(2 + p)(p− 2 + α)3
≤ −

√
(2− p)(p + 2− α)
(2 + p)(p− 2 + α)

.

(29)
Hence

[p2 +
1
2
(3α− 4)p +

1
4
α2](p + 2−α) ≤ [p2− 1

2
(3α− 4)p +

1
4
α2](p− 2 + α),

and then
p2 +

1
2
α(2− α) ≥ 0. (30)

It is easy to check that if α ∈ (−2, 0) and p ∈ [2, 2− α], then (30) holds.
It means that (29) is fulfilled. If α ∈ (−∞,−2) then (30) is satisfied only

for p ∈ [
√
− 1

2α(2− α), 2− α].
Our next goal is to prove the convexity of the above derived envelope

of the line segments.
In view of Remark 2 the envelope of the straight lines going through g0(w)
and g1(w) has no singularities for α ∈ [−12, 0) ∪ (0, 4

3 ]. If α < −12 then
this envelope has the only singularity corresponding to p0 given by(24),
but p0 < cα. Indeed,

−112 + 80α− 9α2 +
√

(3α− 4)(27α3 − 508α2 + 3280α− 4672) <

−24(2− α)α

and then
(α− 2)(7α + 4)(α− 4) > 0 ,
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which is true for α < −12.
Therefore, the envelope of the line segments 〈〈g0(w), g1(w)〉〉 has no sin-
gularities, and, by Lemma 1, is convex. 2

Let α < 0 and

Φα(p) =
1

2(4− α)

[√
α

p− 2 + α

p + 2
− i

√
α

p + 2− α

2− p

]
, p ∈ (2, 2− α],

(31)

Υα(p) =
−1
2αp

[√
α(p + 2)(p− 2 + α)− i

√
α(2− p)(p + 2− α)

]
, (32)

p ∈ [2, 2− α]. For Φα and Υα we have

Φα ((2, 2− α)) = {g1(w) : w ∈ Γα} and Υα ((2, 2− α)) = {g0(w) : w ∈ Γα}.

Let Eα be a bounded domain whose boundary is of the form:

• [0, 1
2 ) ∪Ψα ([2− α, 2]) ∪

(
−i(0,

√
4−2α

8−3α )
)

for α ∈ (0, 4
3 ],

• [0, 1
2 ) ∪ Ψα ([2, dα]) ∪ Φα ((dα, 2− α]) ∪

(
−i(0,

√
4−2α

8−2α )
)

for α ∈
[−2, 0),

• [0, 1
2 )∪Υα ([2, cα))∪Ψα ([cα, dα])∪Φα ((dα, 2− α])∪

(
−i(0,

√
4−2α

8−2α )
)

for α ∈ (−∞,−2).

Theorem 4. For each w ∈ Γα and α ∈ (−∞, 0) ∪ (0, 4
3 ]:

Eα ∩ {g(w) : g ∈ T (∈)} = ∅, (33)

cl(Eα) ∩ {g(w) : g ∈ T (∈)}isaone− pointset. (34)

We need four lemmas to prove Theorem 4.

Lemma 2. For α < −2 and p ∈ (2, cα) we have arg [Φα(p)−Υα(p)] −
arg Υ′α(p) > 0, where the arguments of Φα(p) − Υα(p) and Υ′α(p) are
taken from the interval (− 3π

2 ,−π
2 ) .

Proof. Let α < −2. Firstly, we are going to prove that w(cα) is the only
point, given by w(p), p ∈ (2, 2−α), for which the tangent line to the curve
Υα(Iα) coincides with the straight line going through g0(w) and g1(w).

Let us discuss the equation

Re [Φα(p)−Υα(p)] · ImΥ′α(p) = Im [Φα(p)−Υα(p)] · ReΥ′α(p) .
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This equation, by (31) and (32), is equivalent to

[−αp + 4(2− α)][4p2 − 2αp− 2(4− α)(2− α)] =

[αp + 4(2− α)][4p2 + 2αp + 2(4− α)(2− α)]

and hence p2 = − 1
2α(2− α).

Thus the expression arg [Φα(p)−Υα(p)]− arg Υ′α(p) does not change the
sign for all p ∈ (2, cα).
Moreover,

arg [Φα(p)−Υα(p)] = −π−arctan

(
2p− (4− α)
2p + (4− α)

√
(p + 2)(p + 2− α)
(p− 2)(2− α− p)

)
,

and for p ∈ (2, 4) we have ReΥ′α(p) < 0 and ImΥ′α(p) < 0. Thus

arg Υ′α(p) = −π − arctan

(
αp + 4(2− α)
αp− 4(2− α)

√
(p + 2)(2− α− p)
(p− 2)(p + 2− α)

)
.

For p ∈ (2, 4) the inequality

arg [Φα(p)−Υα(p)]− arg Υ′α(p) > 0 (35)

is equivalent to

αp + 4(2− α)
αp− 4(2− α)

√
(p + 2)(2− α− p)
(p− 2)(p + 2− α)

>
2p− (4− α)
2p + (4− α)

√
(p + 2)(p + 2− α)
(p− 2)(2− α− p)

,

and, in consequence, to p2 < − 1
2α(2 − α). Therefore, (35) holds for p ∈

(2, 4) ∩ (2, cα).
The function arg [Φα(p)−Υα(p)] − arg Υ′α(p) is continuous for p ∈

(2, 2 − α), positive for p ∈ (2, 4) ∩ (2, cα) and its only zero is cα. Thus,
(35) holds for p ∈ (2, cα). 2

Proofs of next three lemmas will be omitted.

Lemma 3. For α < 0 the function arg Υα(p) is decreasing in (2, 2− α).

Lemma 4. The function arg Υ′α(p) is

1. increasing in (2, 2− α) for α ∈ [−4, 0),
2. decreasing in (2, bα) and increasing in (bα, 2− α) for α < −4,
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where bα =
√

6(2− α).

Lemma 5. For α < 0 the function arg Φ′α(p) is increasing in (2, 2− α).

Proof of Theorem 4.

We will prove this theorem only for α < −4. For other α the proof
is easier, because we need only some elements of the argument presented
below. Let w = w(p) be given by (25). Denote by Bp a closed and convex
set whose boundary consists of a ray lp with the end point in g0(w(p))
and going through 2g0(w(p)), a ray kp with the end point in g1(w(p)) and
going through 2g1(w(p)), and a segment 〈〈g0(w(p)), g1(w(p))〉〉.

The set {g(w(p)) : g ∈ T (∈)}, p ∈ (2, 2 − α) is a segment of the
disk whose boundary is given by (5). Moreover, 0 /∈ {g(w(p)) : g ∈ T (∈)}.
From it and from the fact that w = 0 belongs to the circle (5) we conclude
that for p ∈ (2, 2− α)

{g(w(p)) : g ∈ T (∈)} ⊂ B√ .

Let p ∈ (2, bα].
From Lemmas 1 - 4 it yields that Bp ⊂
{u ∈ C : arg [g1(w(p))− g0(w(p))] ≤ arg [u− g0(w(p))] ≤ arg g0(w(p))}

⊂ {u ∈ C : arg [g1(w(bα))− g0(w(bα))] ≤
arg [u− g0(w(p))] ≤ arg g0(w(p))}

⊂ {u ∈ C : arg d
dp g0(w(p))|p=bα ≤ arg [u− g0(w(p))] ≤ arg g0(w(p))}.

Let p ∈ (bα, cα). From Lemmas 1 - 4 we have Bp ⊂
{u ∈ C : arg [g1(w(p))− g0(w(p))] ≤ arg [u− g0(w(p))] ≤ arg g0(w(p))}
⊂ {u ∈ C : arg d

dp g0(w(p)) ≤ arg [u− g0(w(p))] ≤ arg g0(w(p))} .

It means that for p ∈ (2, cα) there is Bp∩Eα = ∅. Therefore, {g(w(p)) :
g ∈ T (∈)} ∩ Eα = ∅ and {g(w(p)) : g ∈ T (∈)} ∩ cl(Eα) = {}′(w(√))}.

Let p ∈ (cα, dα). From Lemma 1, from the inequalities arg g0(w(cα)) <
arg g0(w(p)) and arg g1(w(p)) < arg g1(w(dα)) and from the fact that
the segment 〈〈g0(w(p)), g1(w(p))〉〉 is tangent to ∂Eα (or equivalently to
Ψ([cα, dα])) we obtain Bp∩Eα = ∅, and thus {g(w(p)) : g ∈ T (∈)}∩Eα =
∅. Furthermore, the only common point of {g(w(p)) : g ∈ T (∈)} and
cl(Eα) is a point of tangency.
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Let p ∈ (dα, 2− α). From Lemma 1, Lemma 4 and Lemma 5 we have

Bp ⊂ {u ∈ C : arg g1(w(p)) ≤ arg [u− g1(w(p))] ≤
≤ arg [g0(w(p))− g1(w(p))]}

⊂ {u ∈ C : arg g1(w(p)) ≤ arg [u− g1(w(p))] ≤
≤ arg [g0(w(dα))− g1(w(dα))]}

= {u ∈ C : arg g1(w(p)) ≤ arg [u− g1(w(p))] ≤ arg
d

dp
g1(w(p))|p=dα

} .

Hence Bp ∩ Eα = ∅ and {g(w(p)) : g ∈ T (∈)} ∩ Eα = ∅. Moreover,
{g(w(p)) : g ∈ T (∈)} ∩ cl(Eα) = {}∞(w(√))}.

Let Aα = l−1(Dα), i.e. Aα = Ωα ∩ {z ∈ ∆ : Rez > 0, Imz < 0}.
Corolary. KT (2)(Aα) = Eα.

Proof. For each f ∈ T (2) and z ∈ ∆ there are Imz = 0 ⇒ Imf(z) = 0
and Rez = 0 ⇒ Ref(z) = 0. Hence

Eα ∩ {f(z) : f ∈ T (2), z ∈ ∂Aα, z 6= 1, RezImz = 0} = ∅ .

This and Theorem 4 leads to

Eα ∩ {f(z) : f ∈ T (2), z ∈ ∂Aα, z 6= 1} = ∅ .

Moreover, if z = 1 is a regular point of f ∈ T (2) then f(1) ≥ 1
2 (because

for x ∈ (0, 1) there is f(x) ≥ x
1+x2 ). It means that Eα ⊂ f(Aα) for each

f ∈ T (2). Therefore, Eα ⊂ KT (2)(Aα). By the definition of the Koebe
domain, KT (2)(Aα) ⊂ ⋂

ε∈[0,1] fε(Aα).

The univalence of fε in Aα (by Theorem C) and (33) leads to
⋂

ε∈[0,1]

fε(Aα) =

Eα. From the above argument Eα ⊂ KT (2)(Aα) ⊂ Eα. 2

Theorem 5. The set KT (2)(Ωα), α ∈ (−∞, 0) ∪ (0, 4
3 ] is a bounded do-

main, symmetric with respect to both axes of the complex plane. The
boundary of this domain in the fourth quadrant coincides with:
1. Ψα ([2− α, 2]) for α ∈ (0, 4

3 ] ,
2. Ψα ([2, dα]) ∪ Φα ((dα, 2− α]) for α ∈ [−2, 0) ,
3. Υα ([2, cα)) ∪Ψα ([cα, dα]) ∪ Φα ((dα, 2− α]) for α ∈ (−∞,−2) ,
where Ψα, Φα, Υα are given by (15), (29), (30) respectively, and cα =√
− 1

2 (2− α)α , dα =
√

1
2 (α2 − 8α + 8).
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Proof. Let us denote Gα = int((Eα ∪ Eα ∪ (−Eα) ∪ (−Eα)).
I. Let α ∈ (0, 4

3 ]. For each f ∈ T (2) the set f(Ωα) is symmetric with
respect to both axes of the complex plane. Therefore, by Corollary 1,

Eα ∪ Eα ∪ (−Eα) ∪ (−Eα) ⊂ f(Ωα) ,

so
Gα \ {z ∈ C : RezImz = 0} ⊂ f(Ωα) .

If 0 ≤ x < 1 then f(x) ≥ x
1+x2 and if −1 < x < 0 then f(x) ≤ x

1+x2 .
Hence for each f ∈ T (2)

f ((−1, 1)) ⊃ (−1
2
,
1
2
) = Gα ∩ {z ∈ C : Imz = 0} , (36)

and then
Gα \ {z ∈ C : Rez = 0} ⊂ f(Ωα) .

This leads to

Gα \ {z ∈ C : Rez = 0} ⊂ KT (2)(Ωα) .

Our next goal is to prove that the line segment Gα∩{z ∈ C : Rez = 0}
is also included in KT (2)(Ωα).

Let us suppose that there exists a point iy0 such that iy0 /∈ KT (2)(Ωα).
It means there exists a function f? ∈ T (2) such that f?(Ωα) 63 iy0.

Let α0 be taken in such a way that 0 < α0 < α and iy0 ∈ Gα0

(existence of such α0 follows from the definition of Gα and from the fact
that iy0 is an interior point of this segment). We have Ωα0 ⊂ Ωα. Moreover,
these sets have only two common points z = −1 and z = 1.

Since f? is a typically real function, we can see that f?(−1) 6= iy0 and
f?(1) 6= iy0. Hence there exists a neighborhood U of the point iy0 such
that U ∩ f?(Ωα0) = ∅.
This gives U ∩Gα0 = ∅, a contradiction, because

Gα0 \ {z ∈ C : Rez = 0} ⊂ f(Ωα0) .

The above given argument leads to Gα ⊂ KT (2)(Ωα).
From Corollary 1 and the symmetry of f(Ωα) with respect to both

axes of the complex plane we deduce
⋂

ε∈[0,1] fε(Ωα) = Gα and then
KT (2)(Ωα) ⊂ Gα. Hence KT (2)(Ωα) = Gα.



68 L. Koczan, P. Zaprawa

II. Let α < 0. We will prove that

Gα ∩ {f(z) : f ∈ T (2), z ∈ ∂Ωα, z 6= ±1} = ∅ . (37)

According to Theorem 4,

Eα ∩ {f(z) : f ∈ T (2), z ∈ ∂Aα, RezImz 6= 0} = ∅ .

All functions belonging to T (2) are univalent in the lens H [1,3], and then
in Ωα (now Ωα ⊂ H). From this we obtain

f(Aα) ⊂ {z ∈ C : Rez > 0Imz < 0} ,

and, as a consequence,

Gα ∩ {f(z) : f ∈ T (2), z ∈ ∂Ωα, RezImz 6= 0} = ∅ . (38)

Observe that

∂Ωα ∩ {z ∈ C : Rez = 0} =
{
±1

2
(√

8− 2α−√4− 2α
)
i

}

and

∂Gα ∩ {z ∈ C : Rez = 0} =
{
±
√

4− 2α

8− 2α
i

}
.

Since 1
i f

(
1
2

(√
8− 2α−√4− 2α

)
i
) ≥

√
4−2α

8−2α , we have

{f
(

1
2

(√
8− 2α−√4− 2α

)
i

)
: f ∈ T (2)} ∩Gα = ∅ . (39)

The inclusion (36) also holds for α < 0. Combining (38), (39) and (36) we
can write that for each f ∈ T (2)

Gα ⊂ f(Ωα) .

Hence
Gα ⊂ KT (2)(Ωα) ⊂

⋂

ε∈[0,1]

fε(Ωα) .

From the univalence of fε in Ωα it follows that
⋂

ε∈[0,1] fε(Ωα) = Gα. 2

The specific significance of the set Ω 4
3
is presented in Theorem 6.

We know that the equation g′ε(w) = 0, where gε is defined by (6) and ε ∈



Koebe domains for the class of typically real odd functions 69

(0, 8
9 ), has four different solutions. From the univalence of z 7→ z+ 1

z , while
z ∈ ∆, we conclude that the equation f ′ε(z) = 0, where fε is defined by (7)
and ε ∈ (0, 8

9 ), has also four different solutions in ∆: zε , zε , −zε , −zε (we
choose zε to satisfy Rezε > 0 , Imzε > 0). Moreover, z0 = 1 , z8/9 =

√
3

3 i
are the only solutions of f ′0(z) = 0 and f ′8/9(z) = 0 respectively, in the set
{z ∈ ∆ : Rezε ≥ 0 , Imzε ≥ 0}.
Theorem 6. ∂KT (2)(Ω 4

3
) ∩ {z ∈ C : Rez ≥ 0 , Imz ≥ 0} = {fε(zε) :

ε ∈ [0, 8
9 ]}.

Proof. By definition of fε and gε, f ′ε(z) = 0 if and only if g′ε(z + 1
z ) = 0.

Let w = z + 1
z . For ε ∈ [0, 8

9 ] we have g′ε(w) = 0 iff

w = ±
(√

(
√

1− ε + 1)(3
√

1− ε− 1)± i

√
(1−√1− ε)(1 + 3

√
1− ε)

)
.

Since Rezε ≥ 0 , Imzε ≥ 0, zε satisfies the equation

z +
1
z

=
√

(
√

1− ε + 1)(3
√

1− ε− 1)− i

√
(1−√1− ε)(1 + 3

√
1− ε) .

From this fε(zε) =

gε

(√
(
√

1− ε + 1)(3
√

1− ε− 1)− i

√
(1−√1− ε)(1 + 3

√
1− ε)

)
=

(
4− 3ε + i

√
ε(8− 9ε)

)(√
2− 3ε + 2

√
1− ε + i

√
−2 + 3ε + 2

√
1− ε

)

16
√

1− ε
.

Substituting p = 2
√

1− ε (then ε ∈ [0, 8
9 ] iff p ∈ [ 23 , 2]) in the above

we obtain

fε(zε) =
3
√

3
32

[√
(2 + p)(p− 2

3
)3 + i

√
(2− p)(p +

2
3
)3

]
,

which completes the proof. 2

One can define Ωα also for α ∈ ( 4
3 , 2]. It is easily seen that if α1 <

α2 ≤ 2 then Ωα1 ⊂ Ωα2 . Let Gα, α ∈ ( 4
3 , 2] be defined analogously as for

α ∈ (0, 4
3 ]. Certainly, for α ≤ 4

3 we have

Gα = KT (2)(Ωα) ⊂ KT (2)(Ω 4
3
) = G 4

3
.
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From Theorem 6 we know for α ∈ ( 4
3 , 2] that

Gα ⊂ G 4
3
, Gα 6= G 4

3
,

which means
Gα ⊂ KT (2)(Ωα), Gα 6= KT (2)(Ωα).

The above presented argument shows that the set KT (2)(Ω 4
3
) is the

largest subset of KT (2)(∆) (the set KT (2)(∆) is still unknown) which one
can compute applying the method of the envelope.
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