KOEBE DOMAINS FOR THE CLASS OF TYPICALLY REAL ODD FUNCTIONS

L. Koczan, P. Zaprawa

Abstract

In this paper we discuss the generalized Koebe domains for the class $T^{(2)}$ and the set $D \subset \Delta=\{z \in \mathbb{C}:|z|<1\}$, i.e. the sets of the form $\bigcap_{f \in T M} f(D)$. The main idea we work with is the method of the envelope. We determine the Koebe domains for $H=\{z \in$ $\left.\Delta:\left|z^{2}+1\right|>2|z|\right\}$ and for special sets $\Omega_{\alpha}, \alpha \leq \frac{4}{3}$. It appears that the set $\Omega_{\frac{4}{3}}$ is the largest subset of Δ for which one can compute the Koebe domain with the use of this method. It means that the set $K_{T^{(2)}}\left(\Omega_{\frac{4}{3}}\right) \cup K_{T}(\Delta)$ is the largest subset of the still unknown set $K_{T^{(2)}}(\Delta)$ which we are able to derive.

Introduction

Let \mathcal{A} denote the set of all functions which are analytic in the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$ and normalized by $f(0)=f^{\prime}(0)-1=0$. The notion of the Koebe domain was generalized in [5] as follows. For a given class $A \subset \mathcal{A}$ and for a given domain $D \subset \Delta$, a set

$$
\bigcap_{f \in A} f(D)
$$

is called the Koebe domain for the class A and the set D. We denote this set by $K_{A}(D)$.

It is easy to observe that if a compact class A has the property

$$
\begin{equation*}
f \in A \quad \text { iff } \quad e^{-i \varphi} f\left(z e^{i \varphi}\right) \in A \quad \text { for each } \quad \varphi \in R \tag{1}
\end{equation*}
$$

[^0]and $D=\Delta_{r}=\{z \in \mathbb{C}:|z|<r\}, r \in(0,1]$, then $K_{A}\left(\Delta_{r}\right)$ is a disk with the center in the origin. Moreover, if all functions belonging to A are univalent in Δ_{r} then the radius of this disk is equal to $\min \{|f(z)|: f \in A,|z|=r\}$.

The property (1) does not hold in classes consisting of functions with real coefficients, for example in the class of typically real functions

$$
\begin{equation*}
T=\{f \in \mathcal{A}: \operatorname{Im} \ddagger \operatorname{Im}\{(\ddagger) \geq \prime, \ddagger \in \cdot\} \tag{2}
\end{equation*}
$$

We use the notation:
$S=\{f \in \mathcal{A}:\{$ is univalent in $\Delta\}$,
$A_{R}=\{f \in A: f$ has real coefficients $\}$, $\langle\langle a, b\rangle\rangle$ - a line segment connecting $a, b \in \mathbb{C}$,
(A) - a closure of A,
$\operatorname{int}(A)$ - an interior of A.
Koebe domains have a few simple properties.
Theorem A [5]. For a fixed compact class $A \subset \mathcal{A}$ the following properties of $K_{A}(D)$ are true:

1. if A satisfies (1) and $A \subset S$ then $K_{A}\left(\Delta_{r}\right)=\Delta_{m(r)}$, where $m(r)=$ $\min \left\{|f(z)|: f \in A, z \in \partial \Delta_{r}\right\} ;$
2. if $A \subset \mathcal{A}_{\mathcal{R}}$ and D is symmetric with respect to the real axis then $K_{A}(D)$ is symmetric with respect to the real axis;
3. if $A \subset \mathcal{A}_{\mathcal{R}}, f \in A \Longleftrightarrow-f(-z) \in A$, and D is symmetric with respect to both axes then $K_{A}(D)$ is symmetric with respect to both axes;
4. if $D_{1} \subset D_{2}$ then $K_{A}\left(D_{1}\right) \subset K_{A}\left(D_{2}\right)$;
5. if $A_{1}, A_{2} \subset \mathcal{A}$ and $A_{1} \subset A_{2}$ then $K_{A_{2}}(D) \subset K_{A_{1}}(D)$.

In [3] classes of typically real functions with n-fold symmetry were discussed, i.e.

$$
T^{(n)}=\{f \in T: f(\varepsilon z)=\varepsilon f(z), z \in \Delta\}
$$

where $\varepsilon=e^{\frac{2 \pi i}{n}}, n \in N, n \geq 2$. The main result of this paper is
Theorem B [3]. For $k \in N$ we have

$$
\begin{aligned}
T^{(2 k-1)} & =\left\{f: f(z)=\sqrt[2 k-1]{g\left(z^{2 k-1}\right)}, g \in T\right\} \\
T^{(2 k)} & =\left\{f: f(z)=\sqrt[k]{g\left(z^{k}\right)}, g \in T^{(2)}\right\}
\end{aligned}
$$

According to this theorem, the Koebe domains for $T^{(n)}$ can be determined by the relation

$$
\begin{aligned}
K_{T^{(2 k-1)}}(D) & =\left\{z: z^{2 k-1} \in K_{T}(D)\right\}, \\
K_{T^{(2 k)}}(D) & =\left\{z: z^{k} \in K_{T^{(2)}}(D)\right\} .
\end{aligned}
$$

Results concerning the class T were obtained in [5]. In order to determine the Koebe domains also for $T^{(n)}$, while n is odd, we need to know these domains for the class $T^{(2)}$.

Koebe domains for $T^{(2)}$

It is known (see for example [3]) that each function $T^{(2)}$ can be represented in the integral form by

$$
\begin{equation*}
f(z)=\int_{0}^{1} \frac{z\left(1+z^{2}\right)}{\left(1+z^{2}\right)^{2}-4 z^{2} t} d \mu(t) \tag{3}
\end{equation*}
$$

where $\mu \in P_{[0,1]}$, i.e. μ is a probability measure on $[0,1]$.
While researching $T^{(2)}$ it is useful to work with functions

$$
\begin{equation*}
g(w)=\int_{0}^{1} \frac{w}{w^{2}-4 t} d \mu(t) \tag{4}
\end{equation*}
$$

for which $f(z)=g\left(z+\frac{1}{z}\right)$.
Let $\mathcal{T}^{(\epsilon)}$ denote a class of functions given by (4), i.e.

$$
\left.\mathcal{T}^{(\epsilon)}=\{ \}:\right\}(\sqsupseteq)=\int_{,}^{\infty} \frac{\sqsupseteq}{\sqsupseteq \epsilon-\triangle \sqcup}\left\lceil\mu(\sqcup), \sqsupseteq \in \mathbb{C} \backslash[-\in, \in], \mu \in \mathcal{P}_{[\prime, \infty]}\right\}
$$

For $z \neq 0$ let $z+\frac{1}{z}=w,|w|=\varrho, \arg w=\varphi$. The set $\left\{g(w): g \in \mathcal{T}^{(\epsilon)}\right\}$ is a convex hull of the curve $[0,1] \ni t \mapsto \frac{w}{w^{2}-4 t}$ (see for example [1]). It is easy to observe that if w is a point of real or imaginary axis then the set $\left\{g(w): g \in \mathcal{T}^{(\epsilon)}\right\}$ coincides with a segment $\left\langle\left\langle\frac{1}{w}, \frac{w}{w^{2}-4}\right\rangle\right\rangle$ included in this axis. Otherwise, the boundary of the set $\left\{g(w): g \in \mathcal{T}^{(\epsilon)}\right\}$ consists of the arc of the circle

$$
\begin{equation*}
\left|w-\frac{1}{4 \varrho}\left(\frac{1}{\cos \varphi}-i \frac{1}{\sin \varphi}\right)\right|=\left|\frac{1}{4 \varrho}\left(\frac{1}{\cos \varphi}-i \frac{1}{\sin \varphi}\right)\right| \tag{5}
\end{equation*}
$$

having end points $\frac{1}{\varrho} e^{-i \varphi}$ and $\frac{\varrho e^{i \varphi}}{\varrho^{2} e^{2 i \varphi}-4}$ and not containing 0 , and the line segment $\left\langle\left\langle\frac{1}{\varrho} e^{-i \varphi}, \frac{\varrho e^{i \varphi}}{\varrho^{2} e^{2 i \varphi}-4}\right\rangle\right\rangle$. We conclude from this fact that $\min \{|g(w)|:$ $\left.\left.g \in \mathcal{T}^{(\epsilon)}, \arg \right\}(\sqsupseteq)=\beta\right\}, \beta \in\left[1, \frac{\pi}{\epsilon}\right]$ is achieved by functions

$$
\begin{equation*}
g_{\varepsilon}(w)=(1-\varepsilon) \frac{1}{w}+\varepsilon \frac{w}{w^{2}-4} \quad, \quad w \in \mathbb{C} \backslash[-2,2], \varepsilon \in[0,1] . \tag{6}
\end{equation*}
$$

In terms of function $f \in T^{(2)}$, the minimum of $\left\{|f(z)|: f \in T^{(2)}, \arg f(z)=\right.$ $\beta\}, \beta \in\left[0, \frac{\pi}{2}\right]$, is achieved by functions

$$
\begin{equation*}
f_{\varepsilon}(z)=(1-\varepsilon) \frac{z}{1+z^{2}}+\varepsilon \frac{z\left(1+z^{2}\right)}{\left(1-z^{2}\right)^{2}} \quad, \quad z \in \Delta, \varepsilon \in[0,1] \tag{7}
\end{equation*}
$$

which correspond with functions (6).
We begin with finding the Koebe domain for $T^{(2)}$ and the lens $H=$ $\left\{z \in \Delta:\left|z^{2}+1\right|>2|z|\right\}$. The set H, as it is known, has special properties. Firstly, H is the domain of univalence of T [2]. Secondly, it is the only domain of univalence of $T^{(2)}$ that is symmetric with respect to both axes of the complex plane.

We know from [5] that $K_{T}(H)=\Delta_{\frac{1}{4}}$. By Theorem A point $4, K_{T^{(2)}}(H) \supset$ $K_{T}(H)$. The boundary of $K_{T}(H)$ consists of images of some points belonging to the boundary of H under the functions

$$
f(z)=\varepsilon \frac{z}{(1-z)^{2}}+(1-\varepsilon) \frac{z}{(1+z)^{2}} \quad, \quad \varepsilon \in[0,1] .
$$

Since these functions are not in $T^{(2)}$ while $\varepsilon \neq \frac{1}{2}, \Delta_{\frac{1}{4}}$ is a proper subset of $K_{T^{(2)}}(H)$. Furthermore, $z=\frac{1}{4} i$ and $z=-\frac{1}{4} i$ are the only common points of $K_{T}(H)$ and $K_{T^{(2)}}(H)$.

Theorem 1. The set $K_{T^{(2)}}(H)$ is a bounded domain, whose boundary is the curve $\Psi((-\pi, \pi])$, where

$$
\begin{equation*}
\Psi(\varphi)=\frac{1}{2} \cos ^{3} \varphi+i \frac{1}{2}\left(\frac{3}{2}-\sin ^{2} \varphi\right) \sin \varphi, \varphi \in(-\pi, \pi] . \tag{8}
\end{equation*}
$$

Proof. All functions of $T^{(2)}$ are univalent in H. Hence

$$
K_{T^{(2)}}(H)=\bigcap_{0 \leq \varepsilon \leq 1} f_{\varepsilon}(H)
$$

In order to determine the set $K_{T^{(2)}}(H)$ we will derive the envelope of the family of segments $\left\langle\left\langle f_{0}(z), f_{1}(z)\right\rangle\right\rangle$, while z ranges over the whole boundary of H. After that we will prove that this envelope is in fact the boundary of $K_{T^{(2)}}(H)$. Basing on Theorem A point 2 we can restrict determining the envelope to the first quadrant of the complex plane.

Let $z \in \partial H \cap\{z: \operatorname{Im} z>0\}$, which is equivalent to $w=z+\frac{1}{z}=$ $2 e^{i \varphi}, \varphi \in(-\pi, 0)$. Observe that for these z

$$
g_{1}(w)=\frac{w}{w^{2}-4}=\frac{1}{4 i \sin \varphi}
$$

and

$$
g_{0}(w)=\frac{1}{w}=\frac{1}{2} e^{-i \varphi} .
$$

Straight lines going through points $g_{0}(w)$ and $g_{1}(w)$ for a fixed $w=$ $2 e^{i \varphi}, \varphi \in(-\pi, 0)$ are of the form

$$
\begin{equation*}
w_{\varphi}(t)=\frac{1}{2} e^{-i \varphi}+t\left[-\frac{i}{4 \sin \varphi}-\frac{1}{2} e^{-i \varphi}\right] \quad, \quad t \in \mathbb{R}, \varphi \in(-\pi, 0) \tag{9}
\end{equation*}
$$

These lines are pairwise symmetric with respect to the imaginary axis (namely, for all $t \in \mathbb{R}$ and $\varphi \in(-\pi, 0)$ we have $w_{-\pi-\varphi}(t)=-\overline{w_{\varphi}(t)}$). Therefore, the envelope is symmetric with respect to the imaginary axis. This is a reason why we can restrict the set of variability of φ to the interval $\left(-\frac{\pi}{2}, 0\right)$. The line $\left\{w_{-\frac{\pi}{2}}(t): t \in \mathbb{R}\right\}$ coincides with the imaginary axis.

The straight lines (9) can be written equivalently

$$
x \cot 2 \varphi-y-\frac{1}{4 \sin \varphi}=0 \quad, \quad \varphi \in\left(-\frac{\pi}{2}, 0\right) .
$$

From the system

$$
\left\{\begin{array}{l}
x \cot 2 \varphi-y-\frac{1}{4 \sin \varphi}=0 \\
x \frac{-2}{\sin ^{2} 2 \varphi}+\frac{\cos \varphi}{4 \sin ^{2} \varphi}=0
\end{array}\right.
$$

we derive the equation of the envelope of lines (9) in the first quadrant

$$
\begin{equation*}
x=\frac{1}{2} \cos ^{3} \varphi, \quad y=-\frac{1}{2}\left(\frac{3}{2}-\sin ^{2} \varphi\right) \sin \varphi, \varphi \in\left(-\frac{\pi}{2}, 0\right) . \tag{10}
\end{equation*}
$$

Let $W(\varphi)=\frac{1}{2} \cos ^{3} \varphi-i \frac{1}{2}\left(\frac{3}{2}-\sin ^{2} \varphi\right) \sin \varphi, \varphi \in\left(-\frac{\pi}{2}, 0\right)$.
Observe that

$$
\arg W(\varphi)<\arg \frac{1}{4 i \sin \varphi}
$$

and

$$
\arg W(\varphi)>\arg \frac{1}{2} e^{-i \varphi}
$$

where the argument in the above is taken from $(-\pi, \pi]$.
The first inequality is obvious. The second one is equivalent to

$$
\frac{\frac{3}{2}-\sin ^{2} \varphi}{\cos ^{2} \varphi} \tan \varphi<\tan \varphi,
$$

which is true for $\varphi \in\left(-\frac{\pi}{2}, 0\right)$.
Hence, the curve (10) is the envelope of the family of the straight lines (9) for $\varphi \in\left(-\frac{\pi}{2}, 0\right)$, as well as the envelope of the family of the line segments $\left\langle\left\langle g_{0}\left(2 e^{i \varphi}\right), g_{1}\left(2 e^{i \varphi}\right)\right\rangle\right\rangle$ while $\varphi \in\left(-\frac{\pi}{2}, 0\right)$.

Putting $\varphi=0$ into (10) we get the point $\frac{1}{2}=f_{0}(1)=g_{0}(2)$, and putting $\varphi=-\frac{\pi}{2}$ we obtain $\frac{1}{4} i=f_{1}(i(\sqrt{2}-1))=g_{1}(-2 i)$.

It follows from $\arg \left[g_{1}\left(2 e^{i \varphi}\right)-g_{0}\left(2 e^{i \varphi}\right)\right]=-2 \varphi+\frac{\pi}{2}$ that this argument is a decreasing function of $\varphi \in\left(-\frac{\pi}{2}, 0\right)$. Therefore, the bounded domain D for which the curve (10) and the intervals $\left[0, \frac{1}{2}\right]$ and $\left[0, \frac{1}{4} i\right]$ are its boundary is convex. Hence, each set $\left\{f(z): f \in T^{(2)}\right\}$ for $z \in \partial H \cap\{z: \operatorname{Re} z \geq$ $0, \operatorname{Im} z \geq 0\}$, which is the same as $\left\{g\left(2 e^{i \varphi}\right): g \in \mathcal{T}^{(\epsilon)}\right\}$ for $\varphi \in\left[-\frac{\pi}{2}, 0\right]$ is disjoint from D (has exactly one common point with the closure of the curve (10)). It means that $D \subset f(H \cap\{z: \operatorname{Re} z \geq 0, \operatorname{Im} z \geq 0\})$ for each $f \in T^{(2)}$.

Taking the interval $(-\pi, \pi]$ instead of $\left(-\frac{\pi}{2}, 0\right)$ in (10) we obtain a curve which is closed and symmetric with respect to both axes. Let us denote by E the set which has this curve as a boundary and which contains the origin.

From the above argument it follows that $E \subset f(H)$ for each $f \in T^{(2)}$. Since

$$
E \subset \bigcap_{f \in T^{(2)}} f(H) \subset \bigcap_{\varepsilon \in[0,1]} f_{\varepsilon}(H)=E,
$$

we have $E=K_{T^{(2)}}(H)$.
Substituting $\cos \varphi$ by $\sqrt[3]{2 x}$ in (10) one can write the equation of the boundary of $K_{T^{(2)}}(H)$ in the form

$$
y^{2}=\frac{1}{4}\left(1-\sqrt[3]{4 x^{2}}\right)\left(\frac{1}{2}+\sqrt[3]{4 x^{2}}\right)^{2}
$$

Now, we consider some special sets Ω_{α} for which we determine Koebe domains. After that we will be able to indicate the largest Koebe domain for $T^{(2)}$ and some set D which will be possible to determine applying the method of the envelope.

We need the following notation:

$$
\begin{gather*}
l(z)=z+\frac{1}{z}, z \in \Delta \backslash\{0\}, \tag{11}\\
\Omega_{\alpha}=\left\{z \in \Delta:\left|\left(z+\frac{1}{z}\right)^{2}-\alpha\right|>4-\alpha\right\}, \alpha \leq \frac{4}{3} . \tag{12}\\
D_{\alpha}=\left\{w:\left|w^{2}-\alpha\right|>4-\alpha, \operatorname{Re} w>0, \operatorname{Im} w>0\right\}, \alpha \leq \frac{4}{3}, \tag{13}\\
\Gamma_{\alpha}=\left\{w:\left|w^{2}-\alpha\right|=4-\alpha, \operatorname{Re} w>0, \operatorname{Im} w>0\right\}, \alpha \leq \frac{4}{3} . \tag{14}
\end{gather*}
$$

In particular, $\Omega_{0}=H$ and Γ_{0} is the arc of the circle $|w|=2$ that is included in the first quadrant of the complex plane.

All domains $\Omega_{\alpha}, \alpha \leq \frac{4}{3}$ are symmetric with respect to both axes and $l\left(\Omega_{\alpha}\right) \cap\{w: \operatorname{Re} w>0, \operatorname{Im} w>0\}=D_{\alpha}$. According to [3], $l^{-1}\left(D_{\frac{4}{3}}\right)$ is the quarter of the domain of local univalence for $T^{(2)}$ included in the fourth quadrant of the complex plane. It was proved in [4] that
Theorem C. Each function $g \in \mathcal{T}^{(\epsilon)}$ is univalent in $D_{\frac{4}{3}}$.
Obviously, $\alpha<\beta \leq \frac{4}{3} \Longrightarrow D_{\alpha} \subset D_{\beta}$. Hence, all functions $g \in \mathcal{T}^{(\epsilon)}$ are univalent in every set $D_{\alpha}, \alpha \leq \frac{4}{3}$.

In order to determine $K_{T^{(2)}}\left(\Omega_{\alpha}\right)$ we need the envelope of the family of line segments $\left\langle\left\langle g_{0}(w), g_{1}(w)\right\rangle\right\rangle$ for w ranging over Γ_{α}.

For $w \in \Gamma_{\alpha}$ we have

$$
\begin{equation*}
w=\sqrt{\alpha+(4-\alpha) e^{i \varphi}}, \varphi \in(0, \pi) \tag{15}
\end{equation*}
$$

where the branch of the square root is taken in such a way that $\sqrt{1}=1$. Denote

$$
I_{\alpha}= \begin{cases}{[2,2-\alpha]} & \alpha<0, \\ {[2-\alpha, 2]} & \alpha \in\left(0, \frac{4}{3}\right]\end{cases}
$$

and

$$
\begin{gather*}
\Psi_{\alpha}(p)=\frac{2}{\alpha^{2}(4-\alpha)\left(3 p^{2}+2(2-\alpha)\right)}\left[\left[p^{2}-\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}\right] \times\right. \tag{16}\\
\sqrt{\alpha(2+p)(p-2+\alpha)^{3}} \\
\left.-i \alpha\left[p^{2}+\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}\right] \sqrt{\frac{1}{\alpha}(2-p)(p+2-\alpha)^{3}}\right]
\end{gather*}
$$

where $p \in I_{\alpha}, \alpha \in(-\infty, 0) \cup\left(0, \frac{4}{3}\right]$.

Theorem 2. The envelope of the straight lines going through $g_{0}(w)$ and $g_{1}(w)$, while w is of the form (15) and $\alpha \in(-\infty, 0) \cup\left(0, \frac{4}{3}\right]$, coincides with the curve $\Psi_{\alpha}\left(I_{\alpha}\right)$.
Proof. Let w be of the form (15) and $\alpha \in(-\infty, 0) \cup\left(0, \frac{4}{3}\right]$. Denote

$$
\begin{equation*}
\sqrt{\alpha+(4-\alpha) e^{i \varphi}}=\varrho e^{i \theta} \tag{17}
\end{equation*}
$$

where the branch of the square root is chosen as in (15).
From this we observe that $\theta \in\left(0, \frac{\pi}{2}\right)$ and that the sign of $\varrho-2$ depends on α. Namely, for $\alpha \in\left(0, \frac{4}{3}\right]$ we have $\varrho-2<0$ and for $\alpha \in(-\infty, 0)$ we have $\varrho-2>0$.
Applying (17) we obtain

$$
g_{0}(w)=\frac{1}{\varrho} \cos \theta-i \frac{1}{\varrho} \sin \theta
$$

and

$$
g_{1}(w)=\frac{\left(\varrho-\frac{4}{\varrho}\right) \cos \theta}{\varrho^{2}+\frac{16}{\varrho^{2}}-8 \cos 2 \theta}-i \frac{\left(\varrho+\frac{4}{\varrho}\right) \sin \theta}{\varrho^{2}+\frac{16}{\varrho^{2}}-8 \cos 2 \theta} .
$$

The real equation of straight lines going through $g_{0}(w)$ and $g_{1}(w)$ can be written in the form

$$
\begin{equation*}
\left[4-\varrho^{2}(1+2 \cos 2 \theta)\right] x \tan \theta+\left[4+\varrho^{2}(1-2 \cos 2 \theta)\right] y+2 \varrho \sin \theta=0 \tag{18}
\end{equation*}
$$

We conclude from (17) that

$$
\begin{align*}
\varrho^{2}= & \sqrt{(4-\alpha)^{2}+2 \alpha(4-\alpha) \cos \varphi+\alpha^{2}} \\
& \cot 2 \theta=\frac{\alpha+(4-\alpha) \cos \varphi}{(4-\alpha) \sin \varphi} \tag{19}
\end{align*}
$$

For convenience let

$$
\begin{equation*}
p=\frac{1}{2} \sqrt{(4-\alpha)^{2}+2 \alpha(4-\alpha) \cos \varphi+\alpha^{2}} . \tag{20}
\end{equation*}
$$

Hence, if $\varphi \in[0, \pi]$ then $p \in I_{\alpha}$.
From (19) we derive

$$
\begin{gather*}
\varrho^{2}=2 p \\
\varrho^{2} \cos 2 \theta=\frac{2}{\alpha}\left(p^{2}-4+2 \alpha\right) \tag{21}\\
\varrho^{2} \sin 2 \theta=\frac{2}{|\alpha|} \sqrt{\left(4-p^{2}\right)\left(p^{2}-(2-\alpha)^{2}\right)}
\end{gather*}
$$

and then

$$
\begin{align*}
& \varrho \cos \theta=\frac{1}{|\alpha|} \sqrt{\alpha(p+2)(p-2+\alpha))}, \tag{22}\\
& \varrho \sin \theta=\frac{1}{|\alpha|} \sqrt{\alpha(2-p)(p+2-\alpha)) .}
\end{align*}
$$

Applying (19) and (22) in (18) we obtain the equation equivalent to (18):

$$
\begin{equation*}
\sqrt{\frac{\alpha(p+2)}{p-2+\alpha}}(4-\alpha-2 p) x+\sqrt{\frac{\alpha(2-p)}{p+2-\alpha}}(4-\alpha+2 p) y+\alpha=0 \tag{23}
\end{equation*}
$$

The envelope of the family of these lines is obtained as the solution of the system

$$
\left\{\begin{array}{l}
\sqrt{\frac{\alpha(p+2)}{p-2+\alpha}}(4-\alpha-2 p) x+\sqrt{\frac{\alpha(2-p)}{p+2-\alpha}}(4-\alpha+2 p) y+\alpha=0 \\
\sqrt{\frac{p-2+\alpha}{\alpha(p+2)}} \frac{4 p^{2}+2(3 \alpha-4) p+\alpha^{2}}{(p-2+\alpha)^{2}} x+\sqrt{\frac{p+2-\alpha}{\alpha(2-p)}} \frac{-4 p^{2}+2(3 \alpha-4) p-\alpha^{2}}{(p+2-\alpha)^{2}}=0 .
\end{array}\right.
$$

In this way we get the curve given by (16).
Remark. 1. In the limit case, taking into account $\lim _{\alpha \rightarrow 0} \Psi_{\alpha}\left(I_{\alpha}\right)$, we obtain the curve $\Psi((-\pi, \pi])$ defined in Theorem 1. One can calculate this limit putting $s=\frac{p-2+\alpha}{\alpha}$ into the equation of Ψ_{α} (in this case $s \in[0,1]$).
2. The curve $\Psi_{\alpha}\left(I_{\alpha}\right)^{\alpha}$ has one singularity for

$$
\begin{align*}
& p_{0}= \\
& \frac{1}{12} \sqrt{3\left(-112+80 \alpha-9 \alpha^{2}+\sqrt{(3 \alpha-4)\left(27 \alpha^{3}-508 \alpha^{2}+3280 \alpha-4672\right)}\right.} \tag{24}
\end{align*}
$$

while $\alpha<-12$ (if $\alpha=-12$ then $p_{0}=2$). It can be concluded from

$$
\begin{gathered}
(x \prime(p))^{2}+(y \prime(p))^{2}= \\
\frac{p\left[24 p^{4}+\left(9 \alpha^{2}-80 \alpha+112\right) p^{2}-2(2-\alpha)\left(\alpha^{2}-16 \alpha+16\right)\right]}{8 \alpha(4-\alpha)\left(4-p^{2}\right)\left(3 p^{2}+4-2 \alpha\right)^{4}}
\end{gathered}
$$

and the fact that p_{0} is the only zero of this expression in $(2,2-\alpha)$.
3. Using (22) one can obtain a new complex parametric equation of Γ_{α}
$w(p)=\frac{1}{|\alpha|}(\sqrt{\alpha(p+2)(p-2+\alpha))}+i \sqrt{\alpha(2-p)(p+2-\alpha))}), p \in I_{\alpha}$,
which is useful in the following consideration.
First we need

Lemma 1. Let $h(p)=\arg \left[g_{1}(w(p))-g_{0}(w(p))\right]$, where g_{0}, g_{1} are given by (6), the argument is taken from the interval $(-2 \pi, 0]$, and let $w(p)$ be given by (25). Then the range of h is $\left[-\frac{3 \pi}{2},-\frac{\pi}{2}\right)$. Moreover, if $\alpha<0$ then h is decreasing in $(2,2-\alpha)$, and if $\alpha \in\left(0, \frac{4}{3}\right]$ then h is increasing in ($2-\alpha, 2$).

Proof. Let w be defined by (15) and let $k(\varphi)=\arg \left[g_{1}(w)-g_{0}(w)\right]$. The function k is decreasing for $\varphi \in(0, \pi)$ because

$$
k(\varphi)=-\left[\frac{1}{2} \arg \left(\alpha+(4-\alpha) e^{i \varphi}\right)+\arg \left(e^{i \varphi}-1\right)\right]
$$

Furthermore, by (20) for $\alpha \in\left(0, \frac{4}{3}\right], p$ is a decreasing function of φ. Hence, there exists its inverse function $\varphi=\varphi(p)$ and it is decreasing for $p \in[2-\alpha, 2]$. Combining these facts, we conclude that $h(p)=k(\varphi(p))$ is an increasing function for $p \in(2-\alpha, 2)$.

In the second case, for $\alpha<0$, it follows from (20) that p is an increasing function of φ, and consequently, $h(p)=k(\varphi(p))$ is a decreasing function for $p \in(2-\alpha, 2)$.

Theorem 3. The envelope of the line segments $\left\langle\left\langle g_{0}(w), g_{1}(w)\right\rangle\right\rangle$, where g_{0}, g_{1} are given by (6) and w is given by (15), is a convex curve of the form

1. $\Psi_{\alpha}((2-\alpha, 2))$ for $\alpha \in\left(0, \frac{4}{3}\right]$,
2. $\Psi_{\alpha}\left(\left(2, d_{\alpha}\right)\right)$ for $\alpha \in[-2,0)$,
3. $\Psi_{\alpha}\left(\left(c_{\alpha}, d_{\alpha}\right)\right)$ for $\alpha \in(-\infty,-2)$,
where Ψ_{α} is given by (16) and

$$
c_{\alpha}=\sqrt{-\frac{1}{2}(2-\alpha) \alpha}, \quad d_{\alpha}=\sqrt{\frac{1}{2}\left(\alpha^{2}-8 \alpha+8\right)} .
$$

In this theorem and further on, the convexity of a curve means that the tangent line to this curve lies below the curve.

Proof. According to Theorem $2, \Psi_{\alpha}\left(I_{\alpha}\right), \alpha \in(-\infty, 0) \cup\left(0, \frac{4}{3}\right]$ is the envelope of straight lines going through $g_{0}(w)$ and $g_{1}(w), w \in \Gamma_{\alpha}$.

This curve (whole or only a part of it) is also the envelope of line segments $\left\langle\left\langle g_{0}(w), g_{1}(w)\right\rangle\right\rangle$, but only for these p which satisfy the inequality

$$
\begin{equation*}
\arg g_{1}(w(p)) \leq \arg \Psi_{\alpha}(p) \leq \arg g_{0}(w(p)), p \in I_{\alpha} \tag{26}
\end{equation*}
$$

For $w \in \Gamma_{\alpha}$ (w is of the form (15)) we have

$$
\begin{gather*}
\arg g_{1}(w)=\arg \left[\left(\varrho^{2}-4\right) \cos \theta-i\left(\varrho^{2}+4\right) \sin \theta\right] \\
\quad \arg g_{0}(w)=\arg [\cos \theta-i \sin \theta]=-\theta . \tag{27}
\end{gather*}
$$

Let $\alpha \in\left(0, \frac{4}{3}\right]$ and let Ψ_{α} be given by (16).
It follows from (27) that $\arg g_{1}(w) \in\left(-\pi,-\frac{\pi}{2}\right)$ and $\arg g_{0}(w) \in\left(-\frac{\pi}{2}, 0\right)$. Moreover, $\arg \Psi_{\alpha}(p) \in\left(-\frac{\pi}{2}, 0\right)$ for $p \in(2-\alpha, 2)$. Since the left hand side of (26) is fulfilled, it is sufficient to discuss only the right hand side inequality. We rewrite it as follows

$$
\frac{p^{2}+\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}}{p^{2}-\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}} \sqrt{\frac{(2-p)(p+2-\alpha)^{3}}{(2+p)(p-2+\alpha)^{3}}} \geq \sqrt{\frac{(2-p)(p+2-\alpha)}{(2+p)(p-2+\alpha)}}
$$

and equivalently
$\left[p^{2}+\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}\right](p+2-\alpha) \geq\left[p^{2}-\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}\right](p-2+\alpha)$, and further on

$$
p^{2}+\frac{1}{2} \alpha(2-\alpha) \geq 0
$$

which holds for $\alpha \in\left(0, \frac{4}{3}\right]$ and $p \in[2-\alpha, 2]$.
Therefore, the inequality (26) is true for $\alpha \in\left(0, \frac{4}{3}\right]$ and $w \in \Gamma_{\alpha}$. We conclude from this that the curve $\Psi_{\alpha}\left(I_{\alpha}\right)$ is really the envelope of line segments $\left\langle\left\langle g_{0}(w), g_{1}(w)\right\rangle\right\rangle$ for $\alpha \in\left(0, \frac{4}{3}\right]$.

Let now $\alpha \in(-\infty, 0)$ and $w \in \Gamma_{\alpha}$.
From (27) we obtain $\arg g_{1}(w) \in\left(-\frac{\pi}{2}, 0\right)$ and $\arg g_{0}(w) \in\left(-\frac{\pi}{2}, 0\right)$. The left hand side of (26) is equivalent to

$$
\begin{gathered}
-\frac{p^{2}+\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}}{p^{2}-\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}} \sqrt{\frac{(2-p)(p+2-\alpha)^{3}}{(2+p)(p-2+\alpha)^{3}}} \leq \\
\frac{p+2}{p-2} \sqrt{\frac{(2-p)(p+2-\alpha)}{(2+p)(p-2+\alpha)}}
\end{gathered}
$$

and then

$$
-\left[p^{2}+\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}\right]\left[-p^{2}+\alpha p-2(2-\alpha)\right]
$$

$$
\geq\left[p^{2}-\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}\right]\left[p^{2}+\alpha p-2(2-\alpha)\right] .
$$

After simple calculations it takes form

$$
\begin{equation*}
(4-\alpha) p\left[p^{2}-\frac{1}{2}\left(\alpha^{2}-8 \alpha+8\right)\right] \geq 0 \tag{28}
\end{equation*}
$$

The inequality (28), and in consequence, the inequality $\arg g_{1}(w) \leq \arg \Psi_{\alpha}(p)$ holds only for $p \in\left[2, \sqrt{\frac{1}{2}\left(\alpha^{2}-8 \alpha+8\right)}\right]$ because of $2<$
$\sqrt{\frac{1}{2}\left(\alpha^{2}-8 \alpha+8\right)}<2-\alpha$.
The right hand side of (26) turns to

$$
\begin{equation*}
\frac{p^{2}+\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}}{p^{2}-\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}} \sqrt{\frac{(2-p)(p+2-\alpha)^{3}}{(2+p)(p-2+\alpha)^{3}}} \leq-\sqrt{\frac{(2-p)(p+2-\alpha)}{(2+p)(p-2+\alpha)}} \tag{29}
\end{equation*}
$$

Hence
$\left[p^{2}+\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}\right](p+2-\alpha) \leq\left[p^{2}-\frac{1}{2}(3 \alpha-4) p+\frac{1}{4} \alpha^{2}\right](p-2+\alpha)$,
and then

$$
\begin{equation*}
p^{2}+\frac{1}{2} \alpha(2-\alpha) \geq 0 \tag{30}
\end{equation*}
$$

It is easy to check that if $\alpha \in(-2,0)$ and $p \in[2,2-\alpha]$, then (30) holds. It means that (29) is fulfilled. If $\alpha \in(-\infty,-2)$ then (30) is satisfied only for $p \in\left[\sqrt{-\frac{1}{2} \alpha(2-\alpha)}, 2-\alpha\right]$.

Our next goal is to prove the convexity of the above derived envelope of the line segments.
In view of Remark 2 the envelope of the straight lines going through $g_{0}(w)$ and $g_{1}(w)$ has no singularities for $\alpha \in[-12,0) \cup\left(0, \frac{4}{3}\right]$. If $\alpha<-12$ then this envelope has the only singularity corresponding to p_{0} given by (24), but $p_{0}<c_{\alpha}$. Indeed,

$$
\begin{gathered}
-112+80 \alpha-9 \alpha^{2}+\sqrt{(3 \alpha-4)\left(27 \alpha^{3}-508 \alpha^{2}+3280 \alpha-4672\right)}< \\
-24(2-\alpha) \alpha
\end{gathered}
$$

and then

$$
(\alpha-2)(7 \alpha+4)(\alpha-4)>0,
$$

which is true for $\alpha<-12$.
Therefore, the envelope of the line segments $\left\langle\left\langle g_{0}(w), g_{1}(w)\right\rangle\right\rangle$ has no singularities, and, by Lemma 1, is convex.

Let $\alpha<0$ and

$$
\begin{align*}
& \Phi_{\alpha}(p)=\frac{1}{2(4-\alpha)}\left[\sqrt{\alpha \frac{p-2+\alpha}{p+2}}-i \sqrt{\alpha \frac{p+2-\alpha}{2-p}}\right], p \in(2,2-\alpha] \tag{31}\\
& \Upsilon_{\alpha}(p)=\frac{-1}{2 \alpha p}[\sqrt{\alpha(p+2)(p-2+\alpha)}-i \sqrt{\alpha(2-p)(p+2-\alpha)}] \tag{32}
\end{align*}
$$

$p \in[2,2-\alpha]$. For Φ_{α} and Υ_{α} we have
$\Phi_{\alpha}((2,2-\alpha))=\left\{g_{1}(w): w \in \Gamma_{\alpha}\right\}$ and $\Upsilon_{\alpha}((2,2-\alpha))=\left\{g_{0}(w): w \in \Gamma_{\alpha}\right\}$.
Let E_{α} be a bounded domain whose boundary is of the form:

- $\left[0, \frac{1}{2}\right) \cup \Psi_{\alpha}([2-\alpha, 2]) \cup\left(-i\left(0, \frac{\sqrt{4-2 \alpha}}{8-3 \alpha}\right)\right)$ for $\quad \alpha \in\left(0, \frac{4}{3}\right]$,
- $\left[0, \frac{1}{2}\right) \cup \Psi_{\alpha}\left(\left[2, d_{\alpha}\right]\right) \cup \Phi_{\alpha}\left(\left(d_{\alpha}, 2-\alpha\right]\right) \cup\left(-i\left(0, \frac{\sqrt{4-2 \alpha}}{8-2 \alpha}\right)\right)$ for $\quad \alpha \in$ $[-2,0)$,
- $\left[0, \frac{1}{2}\right) \cup \Upsilon_{\alpha}\left(\left[2, c_{\alpha}\right)\right) \cup \Psi_{\alpha}\left(\left[c_{\alpha}, d_{\alpha}\right]\right) \cup \Phi_{\alpha}\left(\left(d_{\alpha}, 2-\alpha\right]\right) \cup\left(-i\left(0, \frac{\sqrt{4-2 \alpha}}{8-2 \alpha}\right)\right)$ for $\alpha \in(-\infty,-2)$.
Theorem 4. For each $w \in \Gamma_{\alpha}$ and $\alpha \in(-\infty, 0) \cup\left(0, \frac{4}{3}\right]$:

$$
\begin{gather*}
E_{\alpha} \cap\left\{g(w): g \in \mathcal{T}^{(\epsilon)}\right\}=\emptyset \tag{33}\\
c l\left(E_{\alpha}\right) \cap\left\{g(w): g \in \mathcal{T}^{(\epsilon)}\right\} \text { isaone }- \text { pointset. } \tag{34}
\end{gather*}
$$

We need four lemmas to prove Theorem 4.
Lemma 2. For $\alpha<-2$ and $p \in\left(2, c_{\alpha}\right)$ we have $\arg \left[\Phi_{\alpha}(p)-\Upsilon_{\alpha}(p)\right]-$ $\arg \Upsilon_{\alpha}^{\prime}(p)>0$, where the arguments of $\Phi_{\alpha}(p)-\Upsilon_{\alpha}(p)$ and $\Upsilon_{\alpha}^{\prime}(p)$ are taken from the interval $\left(-\frac{3 \pi}{2},-\frac{\pi}{2}\right)$.
Proof. Let $\alpha<-2$. Firstly, we are going to prove that $w\left(c_{\alpha}\right)$ is the only point, given by $w(p), p \in(2,2-\alpha)$, for which the tangent line to the curve $\Upsilon_{\alpha}\left(I_{\alpha}\right)$ coincides with the straight line going through $g_{0}(w)$ and $g_{1}(w)$.

Let us discuss the equation

$$
\operatorname{Re}\left[\Phi_{\alpha}(p)-\Upsilon_{\alpha}(p)\right] \cdot \operatorname{Im} \Upsilon_{\alpha}^{\prime}(p)=\operatorname{Im}\left[\Phi_{\alpha}(p)-\Upsilon_{\alpha}(p)\right] \cdot \operatorname{Re} \Upsilon_{\alpha}^{\prime}(p)
$$

This equation, by (31) and (32), is equivalent to

$$
\begin{gathered}
{[-\alpha p+4(2-\alpha)]\left[4 p^{2}-2 \alpha p-2(4-\alpha)(2-\alpha)\right]=} \\
{[\alpha p+4(2-\alpha)]\left[4 p^{2}+2 \alpha p+2(4-\alpha)(2-\alpha)\right]}
\end{gathered}
$$

and hence $p^{2}=-\frac{1}{2} \alpha(2-\alpha)$.
Thus the expression $\arg \left[\Phi_{\alpha}(p)-\Upsilon_{\alpha}(p)\right]-\arg \Upsilon_{\alpha}^{\prime}(p)$ does not change the sign for all $p \in\left(2, c_{\alpha}\right)$.
Moreover,
$\arg \left[\Phi_{\alpha}(p)-\Upsilon_{\alpha}(p)\right]=-\pi-\arctan \left(\frac{2 p-(4-\alpha)}{2 p+(4-\alpha)} \sqrt{\frac{(p+2)(p+2-\alpha)}{(p-2)(2-\alpha-p)}}\right)$,
and for $p \in(2,4)$ we have $\operatorname{Re}^{\prime}{ }_{\alpha}^{\prime}(p)<0$ and $\operatorname{Im} \Upsilon_{\alpha}^{\prime}(p)<0$. Thus

$$
\arg \Upsilon_{\alpha}^{\prime}(p)=-\pi-\arctan \left(\frac{\alpha p+4(2-\alpha)}{\alpha p-4(2-\alpha)} \sqrt{\frac{(p+2)(2-\alpha-p)}{(p-2)(p+2-\alpha)}}\right)
$$

For $p \in(2,4)$ the inequality

$$
\begin{equation*}
\arg \left[\Phi_{\alpha}(p)-\Upsilon_{\alpha}(p)\right]-\arg \Upsilon_{\alpha}^{\prime}(p)>0 \tag{35}
\end{equation*}
$$

is equivalent to

$$
\frac{\alpha p+4(2-\alpha)}{\alpha p-4(2-\alpha)} \sqrt{\frac{(p+2)(2-\alpha-p)}{(p-2)(p+2-\alpha)}}>\frac{2 p-(4-\alpha)}{2 p+(4-\alpha)} \sqrt{\frac{(p+2)(p+2-\alpha)}{(p-2)(2-\alpha-p)}}
$$

and, in consequence, to $p^{2}<-\frac{1}{2} \alpha(2-\alpha)$. Therefore, (35) holds for $p \in$ $(2,4) \cap\left(2, c_{\alpha}\right)$.

The function $\arg \left[\Phi_{\alpha}(p)-\Upsilon_{\alpha}(p)\right]-\arg \Upsilon_{\alpha}^{\prime}(p)$ is continuous for $p \in$ $(2,2-\alpha)$, positive for $p \in(2,4) \cap\left(2, c_{\alpha}\right)$ and its only zero is c_{α}. Thus, (35) holds for $p \in\left(2, c_{\alpha}\right)$.

Proofs of next three lemmas will be omitted.
Lemma 3. For $\alpha<0$ the function $\arg \Upsilon_{\alpha}(p)$ is decreasing in $(2,2-\alpha)$.
Lemma 4. The function $\arg \Upsilon_{\alpha}^{\prime}(p)$ is

1. increasing in $(2,2-\alpha)$ for $\alpha \in[-4,0)$,
2. decreasing in $\left(2, b_{\alpha}\right)$ and increasing in $\left(b_{\alpha}, 2-\alpha\right)$ for $\alpha<-4$,
where $b_{\alpha}=\sqrt{6(2-\alpha)}$.
Lemma 5. For $\alpha<0$ the function $\arg \Phi_{\alpha}^{\prime}(p)$ is increasing in $(2,2-\alpha)$.
Proof of Theorem 4.
We will prove this theorem only for $\alpha<-4$. For other α the proof is easier, because we need only some elements of the argument presented below. Let $w=w(p)$ be given by (25). Denote by B_{p} a closed and convex set whose boundary consists of a ray l_{p} with the end point in $g_{0}(w(p))$ and going through $2 g_{0}(w(p))$, a ray k_{p} with the end point in $g_{1}(w(p))$ and going through $2 g_{1}(w(p))$, and a segment $\left\langle\left\langle g_{0}(w(p)), g_{1}(w(p))\right\rangle\right\rangle$.

The set $\left\{g(w(p)): g \in \mathcal{T}^{(\epsilon)}\right\}, p \in(2,2-\alpha)$ is a segment of the disk whose boundary is given by (5). Moreover, $0 \notin\left\{g(w(p)): g \in \mathcal{T}^{(\epsilon)}\right\}$. From it and from the fact that $w=0$ belongs to the circle (5) we conclude that for $p \in(2,2-\alpha)$

$$
\left\{g(w(p)): g \in \mathcal{T}^{(\epsilon)}\right\} \subset \mathcal{B}_{\checkmark}
$$

Let $p \in\left(2, b_{\alpha}\right]$.
From Lemmas 1-4 it yields that $B_{p} \subset$

$$
\begin{gathered}
\left\{u \in \mathbb{C}: \arg \left[g_{1}(w(p))-g_{0}(w(p))\right] \leq \arg \left[u-g_{0}(w(p))\right] \leq \arg g_{0}(w(p))\right\} \\
\subset\left\{u \in \mathbb{C}: \arg \left[g_{1}\left(w\left(b_{\alpha}\right)\right)-g_{0}\left(w\left(b_{\alpha}\right)\right)\right] \leq\right. \\
\left.\arg \left[u-g_{0}(w(p))\right] \leq \arg g_{0}(w(p))\right\} \\
\subset\left\{u \in \mathbb{C}:\left.\arg \frac{d}{d p} g_{0}(w(p))\right|_{p=b_{\alpha}} \leq \arg \left[u-g_{0}(w(p))\right] \leq \arg g_{0}(w(p))\right\}
\end{gathered}
$$

Let $p \in\left(b_{\alpha}, c_{\alpha}\right)$. From Lemmas 1-4 we have $B_{p} \subset$

$$
\begin{aligned}
& \left\{u \in \mathbb{C}: \arg \left[g_{1}(w(p))-g_{0}(w(p))\right] \leq \arg \left[u-g_{0}(w(p))\right] \leq \arg g_{0}(w(p))\right\} \\
& \quad \subset\left\{u \in \mathbb{C}: \arg \frac{d}{d p} g_{0}(w(p)) \leq \arg \left[u-g_{0}(w(p))\right] \leq \arg g_{0}(w(p))\right\}
\end{aligned}
$$

It means that for $p \in\left(2, c_{\alpha}\right)$ there is $B_{p} \cap E_{\alpha}=\emptyset$. Therefore, $\{g(w(p))$: $\left.g \in \mathcal{T}^{(\epsilon)}\right\} \cap \mathcal{E}_{\alpha}=\emptyset$ and $\left.\left\{g(w(p)): g \in \mathcal{T}^{(\epsilon)}\right\} \cap \downharpoonleft \downarrow\left(\mathcal{E}_{\alpha}\right)=\{ \},(\sqsupseteq(\jmath))\right\}$.

Let $p \in\left(c_{\alpha}, d_{\alpha}\right)$. From Lemma 1, from the inequalities $\arg g_{0}\left(w\left(c_{\alpha}\right)\right)<$ $\arg g_{0}(w(p))$ and $\arg g_{1}(w(p))<\arg g_{1}\left(w\left(d_{\alpha}\right)\right)$ and from the fact that the segment $\left\langle\left\langle g_{0}(w(p)), g_{1}(w(p))\right\rangle\right\rangle$ is tangent to ∂E_{α} (or equivalently to $\left.\Psi\left(\left[c_{\alpha}, d_{\alpha}\right]\right)\right)$ we obtain $B_{p} \cap E_{\alpha}=\emptyset$, and thus $\left\{g(w(p)): g \in \mathcal{T}^{(\epsilon)}\right\} \cap \mathcal{E}_{\alpha}=$ \emptyset. Furthermore, the only common point of $\left\{g(w(p)): g \in \mathcal{T}^{(\epsilon)}\right\}$ and $c l\left(E_{\alpha}\right)$ is a point of tangency.

Let $p \in\left(d_{\alpha}, 2-\alpha\right)$. From Lemma 1, Lemma 4 and Lemma 5 we have

$$
\begin{gathered}
B_{p} \subset\left\{u \in \mathbb{C}: \arg g_{1}(w(p)) \leq \arg \left[u-g_{1}(w(p))\right] \leq\right. \\
\left.\leq \arg \left[g_{0}(w(p))-g_{1}(w(p))\right]\right\} \\
\subset\left\{u \in \mathbb{C}: \arg g_{1}(w(p)) \leq \arg \left[u-g_{1}(w(p))\right] \leq\right. \\
\left.\leq \arg \left[g_{0}\left(w\left(d_{\alpha}\right)\right)-g_{1}\left(w\left(d_{\alpha}\right)\right)\right]\right\} \\
=\left\{u \in \mathbb{C}: \arg g_{1}(w(p)) \leq \arg \left[u-g_{1}(w(p))\right] \leq\left.\arg \frac{d}{d p} g_{1}(w(p))\right|_{p=d_{\alpha}}\right\} .
\end{gathered}
$$

Hence $B_{p} \cap E_{\alpha}=\emptyset$ and $\left\{g(w(p)): g \in \mathcal{T}^{(\epsilon)}\right\} \cap \mathcal{E}_{\alpha}=\emptyset$. Moreover, $\left.\left\{g(w(p)): g \in \mathcal{T}^{(\epsilon)}\right\} \cap \downharpoonleft \uparrow\left(\mathcal{E}_{\alpha}\right)=\{ \}_{\infty}(\sqsupseteq(\downharpoonleft))\right\}$.

Let $A_{\alpha}=l^{-1}\left(D_{\alpha}\right)$, i.e. $A_{\alpha}=\Omega_{\alpha} \cap\{z \in \Delta: \operatorname{Re} z>0, \operatorname{Im} z<0\}$.
Corolary. $K_{T^{(2)}}\left(A_{\alpha}\right)=E_{\alpha}$.
Proof. For each $f \in T^{(2)}$ and $z \in \Delta$ there are $\operatorname{Im} z=0 \Rightarrow \operatorname{Im} f(z)=0$ and $\operatorname{Re} z=0 \Rightarrow \operatorname{Re} f(z)=0$. Hence

$$
E_{\alpha} \cap\left\{f(z): f \in T^{(2)}, z \in \partial A_{\alpha}, z \neq 1, \operatorname{Re} z \operatorname{Im} z=0\right\}=\emptyset
$$

This and Theorem 4 leads to

$$
E_{\alpha} \cap\left\{f(z): f \in T^{(2)}, z \in \partial A_{\alpha}, z \neq 1\right\}=\emptyset
$$

Moreover, if $z=1$ is a regular point of $f \in T^{(2)}$ then $f(1) \geq \frac{1}{2}$ (because for $x \in(0,1)$ there is $\left.f(x) \geq \frac{x}{1+x^{2}}\right)$. It means that $E_{\alpha} \subset f\left(A_{\alpha}\right)$ for each $f \in T^{(2)}$. Therefore, $E_{\alpha} \subset K_{T^{(2)}}\left(A_{\alpha}\right)$. By the definition of the Koebe domain, $K_{T^{(2)}}\left(A_{\alpha}\right) \subset \bigcap_{\varepsilon \in[0,1]} f_{\varepsilon}\left(A_{\alpha}\right)$.
The univalence of f_{ε} in A_{α} (by Theorem C) and (33) leads to $\bigcap_{\varepsilon \in[0,1]} f_{\varepsilon}\left(A_{\alpha}\right)=$ E_{α}. From the above argument $E_{\alpha} \subset K_{T^{(2)}}\left(A_{\alpha}\right) \subset E_{\alpha}$.
Theorem 5. The set $K_{T^{(2)}}\left(\Omega_{\alpha}\right), \alpha \in(-\infty, 0) \cup\left(0, \frac{4}{3}\right]$ is a bounded domain, symmetric with respect to both axes of the complex plane. The boundary of this domain in the fourth quadrant coincides with:

1. $\Psi_{\alpha}([2-\alpha, 2])$ for $\alpha \in\left(0, \frac{4}{3}\right]$,
2. $\Psi_{\alpha}\left(\left[2, d_{\alpha}\right]\right) \cup \Phi_{\alpha}\left(\left(d_{\alpha}, 2-\alpha\right]\right)$ for $\alpha \in[-2,0)$,
3. $\Upsilon_{\alpha}\left(\left[2, c_{\alpha}\right)\right) \cup \Psi_{\alpha}\left(\left[c_{\alpha}, d_{\alpha}\right]\right) \cup \Phi_{\alpha}\left(\left(d_{\alpha}, 2-\alpha\right]\right)$ for $\alpha \in(-\infty,-2)$, where $\Psi_{\alpha}, \Phi_{\alpha}, \Upsilon_{\alpha}$ are given by (15), (29), (30) respectively, and $c_{\alpha}=$ $\sqrt{-\frac{1}{2}(2-\alpha) \alpha}, \quad d_{\alpha}=\sqrt{\frac{1}{2}\left(\alpha^{2}-8 \alpha+8\right)}$.

Proof. Let us denote $G_{\alpha}=\operatorname{int}\left(\overline{(} E_{\alpha} \cup \overline{E_{\alpha}} \cup\left(-E_{\alpha}\right) \cup\left(-\overline{E_{\alpha}}\right)\right)$.
I. Let $\alpha \in\left(0, \frac{4}{3}\right]$. For each $f \in T^{(2)}$ the set $f\left(\Omega_{\alpha}\right)$ is symmetric with respect to both axes of the complex plane. Therefore, by Corollary 1,

$$
E_{\alpha} \cup \overline{E_{\alpha}} \cup\left(-E_{\alpha}\right) \cup\left(-\overline{E_{\alpha}}\right) \subset f\left(\Omega_{\alpha}\right),
$$

so

$$
G_{\alpha} \backslash\{z \in \mathbb{C}: \operatorname{Re} z \operatorname{Im} z=0\} \subset f\left(\Omega_{\alpha}\right)
$$

If $0 \leq x<1$ then $f(x) \geq \frac{x}{1+x^{2}}$ and if $-1<x<0$ then $f(x) \leq \frac{x}{1+x^{2}}$. Hence for each $f \in T^{(2)}$

$$
\begin{equation*}
f((-1,1)) \supset\left(-\frac{1}{2}, \frac{1}{2}\right)=G_{\alpha} \cap\{z \in \mathbb{C}: \operatorname{Im} z=0\} \tag{36}
\end{equation*}
$$

and then

$$
G_{\alpha} \backslash\{z \in \mathbb{C}: \operatorname{Re} z=0\} \subset f\left(\Omega_{\alpha}\right)
$$

This leads to

$$
G_{\alpha} \backslash\{z \in \mathbb{C}: \operatorname{Re} z=0\} \subset K_{T^{(2)}}\left(\Omega_{\alpha}\right)
$$

Our next goal is to prove that the line segment $G_{\alpha} \cap\{z \in \mathbb{C}: \operatorname{Re} z=0\}$ is also included in $K_{T^{(2)}}\left(\Omega_{\alpha}\right)$.

Let us suppose that there exists a point $i y_{0}$ such that $i y_{0} \notin K_{T^{(2)}}\left(\Omega_{\alpha}\right)$. It means there exists a function $f_{\star} \in T^{(2)}$ such that $f_{\star}\left(\Omega_{\alpha}\right) \not \supset i y_{0}$.

Let α_{0} be taken in such a way that $0<\alpha_{0}<\alpha$ and $i y_{0} \in G_{\alpha_{0}}$ (existence of such α_{0} follows from the definition of G_{α} and from the fact that $i y_{0}$ is an interior point of this segment). We have $\Omega_{\alpha_{0}} \subset \Omega_{\alpha}$. Moreover, these sets have only two common points $z=-1$ and $z=1$.

Since f_{\star} is a typically real function, we can see that $f_{\star}(-1) \neq i y_{0}$ and $f_{\star}(1) \neq i y_{0}$. Hence there exists a neighborhood U of the point $i y_{0}$ such that $U \cap f_{\star}\left(\Omega_{\alpha_{0}}\right)=\emptyset$.
This gives $U \cap G_{\alpha_{0}}=\emptyset$, a contradiction, because

$$
G_{\alpha_{0}} \backslash\{z \in \mathbb{C}: \operatorname{Re} z=0\} \subset f\left(\Omega_{\alpha_{0}}\right)
$$

The above given argument leads to $G_{\alpha} \subset K_{T^{(2)}}\left(\Omega_{\alpha}\right)$.
From Corollary 1 and the symmetry of $f\left(\Omega_{\alpha}\right)$ with respect to both axes of the complex plane we deduce $\bigcap_{\varepsilon \in[0,1]} f_{\varepsilon}\left(\Omega_{\alpha}\right)=G_{\alpha}$ and then $K_{T^{(2)}}\left(\Omega_{\alpha}\right) \subset G_{\alpha}$. Hence $K_{T^{(2)}}\left(\Omega_{\alpha}\right)=G_{\alpha}$.
II. Let $\alpha<0$. We will prove that

$$
\begin{equation*}
G_{\alpha} \cap\left\{f(z): f \in T^{(2)}, z \in \partial \Omega_{\alpha}, z \neq \pm 1\right\}=\emptyset \tag{37}
\end{equation*}
$$

According to Theorem 4,

$$
E_{\alpha} \cap\left\{f(z): f \in T^{(2)}, z \in \partial A_{\alpha}, \operatorname{Re} z \operatorname{Im} z \neq 0\right\}=\emptyset
$$

All functions belonging to $T^{(2)}$ are univalent in the lens $H[1,3]$, and then in Ω_{α} (now $\Omega_{\alpha} \subset H$). From this we obtain

$$
f\left(A_{\alpha}\right) \subset\{z \in \mathbb{C}: \operatorname{Re} z>0 \operatorname{Im} z<0\}
$$

and, as a consequence,

$$
\begin{equation*}
G_{\alpha} \cap\left\{f(z): f \in T^{(2)}, z \in \partial \Omega_{\alpha}, \operatorname{Re} z \operatorname{Im} z \neq 0\right\}=\emptyset \tag{38}
\end{equation*}
$$

Observe that

$$
\partial \Omega_{\alpha} \cap\{z \in \mathbb{C}: \operatorname{Re} z=0\}=\left\{ \pm \frac{1}{2}(\sqrt{8-2 \alpha}-\sqrt{4-2 \alpha}) i\right\}
$$

and

$$
\partial G_{\alpha} \cap\{z \in \mathbb{C}: \operatorname{Re} z=0\}=\left\{ \pm \frac{\sqrt{4-2 \alpha}}{8-2 \alpha} i\right\}
$$

Since $\frac{1}{i} f\left(\frac{1}{2}(\sqrt{8-2 \alpha}-\sqrt{4-2 \alpha}) i\right) \geq \frac{\sqrt{4-2 \alpha}}{8-2 \alpha}$, we have

$$
\begin{equation*}
\left\{f\left(\frac{1}{2}(\sqrt{8-2 \alpha}-\sqrt{4-2 \alpha}) i\right): f \in T^{(2)}\right\} \cap G_{\alpha}=\emptyset \tag{39}
\end{equation*}
$$

The inclusion (36) also holds for $\alpha<0$. Combining (38), (39) and (36) we can write that for each $f \in T^{(2)}$

$$
G_{\alpha} \subset f\left(\Omega_{\alpha}\right)
$$

Hence

$$
G_{\alpha} \subset K_{T^{(2)}}\left(\Omega_{\alpha}\right) \subset \bigcap_{\varepsilon \in[0,1]} f_{\varepsilon}\left(\Omega_{\alpha}\right)
$$

From the univalence of f_{ε} in Ω_{α} it follows that $\bigcap_{\varepsilon \in[0,1]} f_{\varepsilon}\left(\Omega_{\alpha}\right)=G_{\alpha}$.
The specific significance of the set $\Omega_{\frac{4}{3}}$ is presented in Theorem 6 . We know that the equation $g_{\varepsilon}^{\prime}(w)=0$, where g_{ε} is defined by (6) and $\varepsilon \in$
($0, \frac{8}{9}$), has four different solutions. From the univalence of $z \mapsto z+\frac{1}{z}$, while $z \in \Delta$, we conclude that the equation $f_{\varepsilon}^{\prime}(z)=0$, where f_{ε} is defined by (7) and $\varepsilon \in\left(0, \frac{8}{9}\right)$, has also four different solutions in $\Delta: z_{\varepsilon}, \overline{z_{\varepsilon}},-z_{\varepsilon},-\overline{z_{\varepsilon}}$ (we choose z_{ε} to satisfy $\left.\operatorname{Re} z_{\varepsilon}>0, \operatorname{Im} z_{\varepsilon}>0\right)$. Moreover, $z_{0}=1, z_{8 / 9}=\frac{\sqrt{3}}{3} i$ are the only solutions of $f_{0}^{\prime}(z)=0$ and $f_{8 / 9}^{\prime}(z)=0$ respectively, in the set $\left\{z \in \Delta: \operatorname{Re} z_{\varepsilon} \geq 0, \operatorname{Im} z_{\varepsilon} \geq 0\right\}$.
Theorem 6. $\partial K_{T^{(2)}}\left(\Omega_{\frac{4}{3}}\right) \cap\{z \in \mathbb{C}: \operatorname{Re} z \geq 0, \operatorname{Im} z \geq 0\}=\left\{f_{\varepsilon}\left(z_{\varepsilon}\right):\right.$ $\left.\varepsilon \in\left[0, \frac{8}{9}\right]\right\}$.
Proof. By definition of f_{ε} and $g_{\varepsilon}, f_{\varepsilon}^{\prime}(z)=0$ if and only if $g_{\varepsilon}^{\prime}\left(z+\frac{1}{z}\right)=0$. Let $w=z+\frac{1}{z}$. For $\varepsilon \in\left[0, \frac{8}{9}\right]$ we have $g_{\varepsilon}^{\prime}(w)=0$ iff

$$
w= \pm(\sqrt{(\sqrt{1-\varepsilon}+1)(3 \sqrt{1-\varepsilon}-1)} \pm i \sqrt{(1-\sqrt{1-\varepsilon})(1+3 \sqrt{1-\varepsilon})})
$$

Since $\operatorname{Re} z_{\varepsilon} \geq 0, \operatorname{Im} z_{\varepsilon} \geq 0, z_{\varepsilon}$ satisfies the equation

$$
z+\frac{1}{z}=\sqrt{(\sqrt{1-\varepsilon}+1)(3 \sqrt{1-\varepsilon}-1)}-i \sqrt{(1-\sqrt{1-\varepsilon})(1+3 \sqrt{1-\varepsilon})} .
$$

From this $f_{\varepsilon}\left(z_{\varepsilon}\right)=$

$$
\begin{aligned}
& g_{\varepsilon}(\sqrt{(\sqrt{1-\varepsilon}+1)(3 \sqrt{1-\varepsilon}-1)}-i \sqrt{(1-\sqrt{1-\varepsilon})(1+3 \sqrt{1-\varepsilon})})= \\
& \frac{(4-3 \varepsilon+i \sqrt{\varepsilon(8-9 \varepsilon)})(\sqrt{2-3 \varepsilon+2 \sqrt{1-\varepsilon}}+i \sqrt{-2+3 \varepsilon+2 \sqrt{1-\varepsilon}})}{16 \sqrt{1-\varepsilon}}
\end{aligned}
$$

Substituting $p=2 \sqrt{1-\varepsilon}$ (then $\varepsilon \in\left[0, \frac{8}{9}\right] \quad$ iff $\quad p \in\left[\frac{2}{3}, 2\right]$) in the above we obtain

$$
f_{\varepsilon}\left(z_{\varepsilon}\right)=\frac{3 \sqrt{3}}{32}\left[\sqrt{(2+p)\left(p-\frac{2}{3}\right)^{3}}+i \sqrt{(2-p)\left(p+\frac{2}{3}\right)^{3}}\right],
$$

which completes the proof.
One can define Ω_{α} also for $\alpha \in\left(\frac{4}{3}, 2\right]$. It is easily seen that if $\alpha_{1}<$ $\alpha_{2} \leq 2$ then $\Omega_{\alpha_{1}} \subset \Omega_{\alpha_{2}}$. Let $G_{\alpha}, \alpha \in\left(\frac{4}{3}, 2\right]$ be defined analogously as for $\alpha \in\left(0, \frac{4}{3}\right]$. Certainly, for $\alpha \leq \frac{4}{3}$ we have

$$
G_{\alpha}=K_{T^{(2)}}\left(\Omega_{\alpha}\right) \subset K_{T^{(2)}}\left(\Omega_{\frac{4}{3}}\right)=G_{\frac{4}{3}} .
$$

From Theorem 6 we know for $\alpha \in\left(\frac{4}{3}, 2\right]$ that

$$
G_{\alpha} \subset G_{\frac{4}{3}}, G_{\alpha} \neq G_{\frac{4}{3}},
$$

which means

$$
G_{\alpha} \subset K_{T^{(2)}}\left(\Omega_{\alpha}\right), G_{\alpha} \neq K_{T^{(2)}}\left(\Omega_{\alpha}\right)
$$

The above presented argument shows that the set $K_{T^{(2)}}\left(\Omega_{\frac{4}{3}}\right)$ is the largest subset of $K_{T^{(2)}}(\Delta)$ (the set $K_{T^{(2)}}(\Delta)$ is still unknown) which one can compute applying the method of the envelope.

Список литературы

[1] Asnevic I. On the regions of values which have Stieltjes integral representation / I. Asnevic, G. V. Ulina // Vestn. Leningr. Univ. N 11. (1955). P. 31-45. (Russian).
[2] Golusin G. On Typically-Real Functions / G. Golusin // Mat. Sb. 27(69). (1950) P. 201-218. (Russian).
[3] Koczan L. On typically real functions with n-fold symmetry / L. Koczan, P. Zaprawa // Ann. Univ. Mariae Curie Sklodowska Sect.A (1998) V. LII. 2. P. 103-112.
[4] Koczan L. Domains of univalence for typically-real odd functions / L. Koczan, P. Zaprawa // Complex Variables. (2003). V. 48. N. 1 P. 1-17.
[5] Koczan L. Covering problems in the class of typically real functions / L. Koczan, P. Zaprawa // Ann. Univ. Mariae Curie Sklodowska Sect.A. (to appear).

Department of Applied Mathematics, Lublin University of Technology,
ul. Nadbystrzycka 38D,
20-618 Lublin, Poland
E-mail: l.koczan@pollub.pl
E-mail: p.zaprawa@pollub.pl

[^0]: © L. Koczan, P. Zaprawa, 2005

