TrudyPetrozavodskogoGosudarstvennogoUniversitetaSeria "Matematika"Vipusk 12, 2005

УДК 517.54

KOEBE DOMAINS FOR THE CLASS OF TYPICALLY REAL ODD FUNCTIONS

L. Koczan, P. Zaprawa

In this paper we discuss the generalized Koebe domains for the class $T^{(2)}$ and the set $D \subset \Delta = \{z \in \mathbb{C} : |z| < 1\}$, i.e. the sets of the form $\bigcap_{f \in TM} f(D)$. The main idea we work with is the method of the envelope. We determine the Koebe domains for $H = \{z \in \Delta : |z^2 + 1| > 2|z|\}$ and for special sets Ω_{α} , $\alpha \leq \frac{4}{3}$. It appears that the set $\Omega_{\frac{4}{3}}$ is the largest subset of Δ for which one can compute the Koebe domain with the use of this method. It means that the set $K_{T^{(2)}}(\Omega_{\frac{4}{3}}) \cup K_T(\Delta)$ is the largest subset of the still unknown set $K_{T^{(2)}}(\Delta)$ which we are able to derive.

Introduction

Let \mathcal{A} denote the set of all functions which are analytic in the unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ and normalized by f(0) = f'(0) - 1 = 0. The notion of the Koebe domain was generalized in [5] as follows. For a given class $\mathcal{A} \subset \mathcal{A}$ and for a given domain $D \subset \Delta$, a set

$$\bigcap_{f \in A} f(D)$$

is called the Koebe domain for the class A and the set D. We denote this set by $K_A(D)$.

It is easy to observe that if a compact class A has the property

$$f \in A$$
 iff $e^{-i\varphi}f(ze^{i\varphi}) \in A$ for each $\varphi \in R$, (1)

[©] L. Koczan, P. Zaprawa, 2005

and $D = \Delta_r = \{z \in \mathbb{C} : |z| < r\}, r \in (0, 1]$, then $K_A(\Delta_r)$ is a disk with the center in the origin. Moreover, if all functions belonging to A are univalent in Δ_r then the radius of this disk is equal to $\min\{|f(z)| : f \in A, |z| = r\}$.

The property (1) does not hold in classes consisting of functions with real coefficients, for example in the class of typically real functions

$$T = \{ f \in \mathcal{A} : \operatorname{Im} \sharp \operatorname{Im} \{ (\ddagger) \ge \prime, \ \ddagger \in \cdot \} .$$

$$(2)$$

We use the notation:

- $S = \{ f \in \mathcal{A} : \{ \text{ is univalent in } \Delta \},\$
- $A_R = \{ f \in A : f \text{ has real coefficients} \},\$
- $\langle \langle a, b \rangle \rangle$ a line segment connecting $a, b \in \mathbb{C}$,
- (A) a closure of A,
- int(A) an interior of A.

Koebe domains have a few simple properties.

THEOREM A [5]. For a fixed compact class $A \subset \mathcal{A}$ the following properties of $K_A(D)$ are true:

- 1. if A satisfies (1) and $A \subset S$ then $K_A(\Delta_r) = \Delta_{m(r)}$, where $m(r) = \min\{|f(z)| : f \in A, z \in \partial \Delta_r\};$
- 2. if $A \subset \mathcal{A}_{\mathcal{R}}$ and D is symmetric with respect to the real axis then $K_A(D)$ is symmetric with respect to the real axis;
- 3. if $A \subset \mathcal{A}_{\mathcal{R}}$, $f \in A \iff -f(-z) \in A$, and D is symmetric with respect to both axes then $K_A(D)$ is symmetric with respect to both axes;
- 4. if $D_1 \subset D_2$ then $K_A(D_1) \subset K_A(D_2)$;
- 5. if $A_1, A_2 \subset \mathcal{A}$ and $A_1 \subset A_2$ then $K_{A_2}(D) \subset K_{A_1}(D)$.

In [3] classes of typically real functions with n-fold symmetry were discussed, i.e.

$$T^{(n)} = \{ f \in T : f(\varepsilon z) = \varepsilon f(z), z \in \Delta \},\$$

where $\varepsilon = e^{\frac{2\pi i}{n}}$, $n \in N$, $n \ge 2$. The main result of this paper is THEOREM B [3]. For $k \in N$ we have

$$T^{(2k-1)} = \{ f : f(z) = \sqrt[2k-1]{g(z^{2k-1})}, g \in T \},\$$
$$T^{(2k)} = \{ f : f(z) = \sqrt[k]{g(z^k)}, g \in T^{(2)} \}.$$

According to this theorem, the Koebe domains for $T^{(n)}$ can be determined by the relation

$$K_{T^{(2k-1)}}(D) = \{ z : z^{2k-1} \in K_T(D) \},\$$
$$K_{T^{(2k)}}(D) = \{ z : z^k \in K_{T^{(2)}}(D) \}.$$

Results concerning the class T were obtained in [5]. In order to determine the Koebe domains also for $T^{(n)}$, while n is odd, we need to know these domains for the class $T^{(2)}$.

Koebe domains for $T^{(2)}$

It is known (see for example [3]) that each function $T^{(2)}$ can be represented in the integral form by

$$f(z) = \int_0^1 \frac{z(1+z^2)}{(1+z^2)^2 - 4z^2 t} d\mu(t),$$
(3)

where $\mu \in P_{[0,1]}$, i.e. μ is a probability measure on [0,1].

While researching $T^{(2)}$ it is useful to work with functions

$$g(w) = \int_0^1 \frac{w}{w^2 - 4t} d\mu(t),$$
(4)

for which $f(z) = g(z + \frac{1}{z})$. Let $\mathcal{T}^{(\in)}$ denote a class of functions given by (4), i.e.

$$\mathcal{T}^{(\in)} = \{\}: \ \}(\supseteq) = \int_{\prime}^{\infty} \frac{\supseteq}{\supseteq^{\in} - \bigtriangleup \sqcup} \left[\mu(\sqcup) , \supseteq \in \mathbb{C} \setminus \left[-\epsilon, \epsilon \right], \ \mu \in \mathcal{P}_{[\prime, \infty]} \} \right].$$

For $z \neq 0$ let $z + \frac{1}{z} = w$, $|w| = \varrho$, $\arg w = \varphi$. The set $\{g(w) : g \in \mathcal{T}^{(\in)}\}$ is a convex hull of the curve $[0, 1] \ni t \mapsto \frac{w}{w^2 - 4t}$ (see for example [1]). It is easy to observe that if w is a point of real or imaginary axis then the set $\{g(w) : g \in \mathcal{T}^{(\in)}\}$ coincides with a segment $\langle \langle \frac{1}{w}, \frac{w}{w^2 - 4} \rangle \rangle$ included in this axis. Otherwise, the boundary of the set $\{g(w) : g \in \mathcal{T}^{(\in)}\}$ consists of the arc of the circle

$$\left|w - \frac{1}{4\varrho} \left(\frac{1}{\cos\varphi} - i\frac{1}{\sin\varphi}\right)\right| = \left|\frac{1}{4\varrho} \left(\frac{1}{\cos\varphi} - i\frac{1}{\sin\varphi}\right)\right| \tag{5}$$

having end points $\frac{1}{\varrho}e^{-i\varphi}$ and $\frac{\varrho e^{i\varphi}}{\varrho^2 e^{2i\varphi}-4}$ and not containing 0, and the line segment $\langle\langle \frac{1}{\varrho}e^{-i\varphi}, \frac{\varrho e^{i\varphi}}{\varrho^2 e^{2i\varphi}-4}\rangle\rangle$. We conclude from this fact that $\min\{|g(w)|: g \in \mathcal{T}^{(\in)}, \arg\}(\beth) = \beta\}, \beta \in [\prime, \frac{\pi}{\epsilon}]$ is achieved by functions

$$g_{\varepsilon}(w) = (1-\varepsilon)\frac{1}{w} + \varepsilon \frac{w}{w^2 - 4} \quad , \quad w \in \mathbb{C} \setminus [-2, 2] \,, \, \varepsilon \in [0, 1].$$
 (6)

In terms of function $f \in T^{(2)}$, the minimum of $\{|f(z)| : f \in T^{(2)}, \arg f(z) = \beta\}, \beta \in [0, \frac{\pi}{2}]$, is achieved by functions

$$f_{\varepsilon}(z) = (1 - \varepsilon)\frac{z}{1 + z^2} + \varepsilon \frac{z(1 + z^2)}{(1 - z^2)^2} \quad , \quad z \in \Delta \,, \, \varepsilon \in [0, 1],$$
(7)

which correspond with functions (6).

We begin with finding the Koebe domain for $T^{(2)}$ and the lens $H = \{z \in \Delta : |z^2 + 1| > 2|z|\}$. The set H, as it is known, has special properties. Firstly, H is the domain of univalence of T [2]. Secondly, it is the only domain of univalence of $T^{(2)}$ that is symmetric with respect to both axes of the complex plane.

We know from [5] that $K_T(H) = \Delta_{\frac{1}{4}}$. By Theorem A point 4, $K_{T^{(2)}}(H) \supset K_T(H)$. The boundary of $K_T(H)$ consists of images of some points belonging to the boundary of H under the functions

$$f(z) = \varepsilon \frac{z}{(1-z)^2} + (1-\varepsilon) \frac{z}{(1+z)^2} , \quad \varepsilon \in [0,1].$$

Since these functions are not in $T^{(2)}$ while $\varepsilon \neq \frac{1}{2}$, $\Delta_{\frac{1}{4}}$ is a proper subset of $K_{T^{(2)}}(H)$. Furthermore, $z = \frac{1}{4}i$ and $z = -\frac{1}{4}i$ are the only common points of $K_T(H)$ and $K_{T^{(2)}}(H)$.

THEOREM 1. The set $K_{T^{(2)}}(H)$ is a bounded domain, whose boundary is the curve $\Psi((-\pi,\pi])$, where

$$\Psi(\varphi) = \frac{1}{2}\cos^3\varphi + i\frac{1}{2}(\frac{3}{2} - \sin^2\varphi)\sin\varphi , \ \varphi \in (-\pi, \pi].$$
(8)

PROOF. All functions of $T^{(2)}$ are univalent in H. Hence

$$K_{T^{(2)}}(H) = \bigcap_{0 \le \varepsilon \le 1} f_{\varepsilon}(H).$$

In order to determine the set $K_{T^{(2)}}(H)$ we will derive the envelope of the family of segments $\langle\langle f_0(z), f_1(z) \rangle\rangle$, while z ranges over the whole boundary of H. After that we will prove that this envelope is in fact the boundary of $K_{T^{(2)}}(H)$. Basing on Theorem A point 2 we can restrict determining the envelope to the first quadrant of the complex plane.

Let $z \in \partial H \cap \{z : \text{Im} z > 0\}$, which is equivalent to $w = z + \frac{1}{z} = 2e^{i\varphi}$, $\varphi \in (-\pi, 0)$. Observe that for these z

$$g_1(w) = \frac{w}{w^2 - 4} = \frac{1}{4i\sin\varphi}$$

and

$$g_0(w) = \frac{1}{w} = \frac{1}{2}e^{-i\varphi}.$$

Straight lines going through points $g_0(w)$ and $g_1(w)$ for a fixed $w = 2e^{i\varphi}$, $\varphi \in (-\pi, 0)$ are of the form

$$w_{\varphi}(t) = \frac{1}{2}e^{-i\varphi} + t\left[-\frac{i}{4\sin\varphi} - \frac{1}{2}e^{-i\varphi}\right] \quad , \quad t \in \mathbb{R} \,, \, \varphi \in (-\pi, 0).$$
(9)

These lines are pairwise symmetric with respect to the imaginary axis (namely, for all $t \in \mathbb{R}$ and $\varphi \in (-\pi, 0)$ we have $w_{-\pi-\varphi}(t) = -\overline{w_{\varphi}(t)}$). Therefore, the envelope is symmetric with respect to the imaginary axis. This is a reason why we can restrict the set of variability of φ to the interval $(-\frac{\pi}{2}, 0)$. The line $\{w_{-\frac{\pi}{2}}(t) : t \in \mathbb{R}\}$ coincides with the imaginary axis.

The straight lines (9) can be written equivalently

$$x \cot 2\varphi - y - \frac{1}{4 \sin \varphi} = 0$$
 , $\varphi \in \left(-\frac{\pi}{2}, 0\right)$.

From the system

$$\left\{ \begin{array}{l} x \cot 2\varphi - y - \frac{1}{4 \sin \varphi} = 0 \\ x \frac{-2}{\sin^2 2\varphi} + \frac{\cos \varphi}{4 \sin^2 \varphi} = 0 \end{array} \right.$$

we derive the equation of the envelope of lines (9) in the first quadrant

$$x = \frac{1}{2}\cos^{3}\varphi, \quad y = -\frac{1}{2}(\frac{3}{2} - \sin^{2}\varphi)\sin\varphi, \varphi \in (-\frac{\pi}{2}, 0).$$
(10)

Let $W(\varphi) = \frac{1}{2}\cos^3\varphi - i\frac{1}{2}(\frac{3}{2} - \sin^2\varphi)\sin\varphi$, $\varphi \in (-\frac{\pi}{2}, 0)$. Observe that

$$\arg W(\varphi) < \arg \frac{1}{4i\sin\varphi}$$

and

$$\arg W(\varphi) > \arg \frac{1}{2} e^{-i\varphi},$$

where the argument in the above is taken from $(-\pi, \pi]$.

The first inequality is obvious. The second one is equivalent to

$$\frac{\frac{3}{2} - \sin^2 \varphi}{\cos^2 \varphi} \tan \varphi < \tan \varphi,$$

which is true for $\varphi \in (-\frac{\pi}{2}, 0)$.

Hence, the curve (10) is the envelope of the family of the straight lines (9) for $\varphi \in (-\frac{\pi}{2}, 0)$, as well as the envelope of the family of the line segments $\langle \langle g_0(2e^{i\varphi}), g_1(2e^{i\varphi}) \rangle \rangle$ while $\varphi \in (-\frac{\pi}{2}, 0)$.

Putting $\varphi = 0$ into (10) we get the point $\frac{1}{2} = f_0(1) = g_0(2)$, and putting $\varphi = -\frac{\pi}{2}$ we obtain $\frac{1}{4}i = f_1(i(\sqrt{2}-1)) = g_1(-2i)$.

It follows from $\arg[g_1(2e^{i\varphi}) - g_0(2e^{i\varphi})] = -2\varphi + \frac{\pi}{2}$ that this argument is a decreasing function of $\varphi \in (-\frac{\pi}{2}, 0)$. Therefore, the bounded domain Dfor which the curve (10) and the intervals $[0, \frac{1}{2}]$ and $[0, \frac{1}{4}i]$ are its boundary is convex. Hence, each set $\{f(z) : f \in T^{(2)}\}$ for $z \in \partial H \cap \{z : \operatorname{Re} z \ge 0, \operatorname{Im} z \ge 0\}$, which is the same as $\{g(2e^{i\varphi}) : g \in T^{(\in)}\}$ for $\varphi \in [-\frac{\pi}{2}, 0]$ is disjoint from D (has exactly one common point with the closure of the curve (10)). It means that $D \subset f(H \cap \{z : \operatorname{Re} z \ge 0, \operatorname{Im} z \ge 0\})$ for each $f \in T^{(2)}$.

Taking the interval $(-\pi, \pi]$ instead of $(-\frac{\pi}{2}, 0)$ in (10) we obtain a curve which is closed and symmetric with respect to both axes. Let us denote by E the set which has this curve as a boundary and which contains the origin.

From the above argument it follows that $E \subset f(H)$ for each $f \in T^{(2)}$. Since

$$E \subset \bigcap_{f \in T^{(2)}} f(H) \subset \bigcap_{\varepsilon \in [0,1]} f_{\varepsilon}(H) = E ,$$

we have $E = K_{T^{(2)}}(H)$. \Box

Substituting $\cos \varphi$ by $\sqrt[3]{2x}$ in (10) one can write the equation of the boundary of $K_{T^{(2)}}(H)$ in the form

$$y^{2} = \frac{1}{4} \left(1 - \sqrt[3]{4x^{2}} \right) \left(\frac{1}{2} + \sqrt[3]{4x^{2}} \right)^{2}.$$

Now, we consider some special sets Ω_{α} for which we determine Koebe domains. After that we will be able to indicate the largest Koebe domain for $T^{(2)}$ and some set D which will be possible to determine applying the method of the envelope.

We need the following notation:

$$l(z) = z + \frac{1}{z}, \, z \in \Delta \setminus \{0\},\tag{11}$$

$$\Omega_{\alpha} = \{ z \in \Delta : |(z + \frac{1}{z})^2 - \alpha| > 4 - \alpha \}, \ \alpha \le \frac{4}{3}.$$
 (12)

$$D_{\alpha} = \{ w : |w^2 - \alpha| > 4 - \alpha, \operatorname{Re}w > 0, \operatorname{Im}w > 0 \}, \ \alpha \le \frac{4}{3},$$
(13)

$$\Gamma_{\alpha} = \{ w : |w^2 - \alpha| = 4 - \alpha, \operatorname{Re} w > 0, \operatorname{Im} w > 0 \}, \ \alpha \le \frac{4}{3}.$$
(14)

In particular, $\Omega_0 = H$ and Γ_0 is the arc of the circle |w| = 2 that is included in the first quadrant of the complex plane.

All domains Ω_{α} , $\alpha \leq \frac{4}{3}$ are symmetric with respect to both axes and $l(\Omega_{\alpha}) \cap \{w : \operatorname{Re} w > 0, \operatorname{Im} w > 0\} = D_{\alpha}$. According to [3], $l^{-1}(D_{\frac{4}{3}})$ is the quarter of the domain of local univalence for $T^{(2)}$ included in the fourth quadrant of the complex plane. It was proved in [4] that

THEOREM C. Each function $g \in \mathcal{T}^{(\epsilon)}$ is univalent in $D_{\frac{4}{3}}$.

Obviously, $\alpha < \beta \leq \frac{4}{3} \Longrightarrow D_{\alpha} \subset D_{\beta}$. Hence, all functions $g \in \mathcal{T}^{(\in)}$ are univalent in every set $D_{\alpha}, \alpha \leq \frac{4}{3}$.

In order to determine $K_{T^{(2)}}(\Omega_{\alpha})$ we need the envelope of the family of line segments $\langle \langle g_0(w), g_1(w) \rangle \rangle$ for w ranging over Γ_{α} .

For $w \in \Gamma_{\alpha}$ we have

$$w = \sqrt{\alpha + (4 - \alpha)e^{i\varphi}}, \, \varphi \in (0, \pi), \tag{15}$$

where the branch of the square root is taken in such a way that $\sqrt{1} = 1$. Denote

$$I_{\alpha} = \begin{cases} [2, 2 - \alpha] & \alpha < 0, \\ [2 - \alpha, 2] & \alpha \in (0, \frac{4}{3}] \end{cases}$$

and

$$\Psi_{\alpha}(p) = \frac{2}{\alpha^{2}(4-\alpha)(3p^{2}+2(2-\alpha))} \left[p^{2} - \frac{1}{2}(3\alpha-4)p + \frac{1}{4}\alpha^{2} \right] \times \sqrt{\alpha(2+p)(p-2+\alpha)^{3}} -i\alpha[p^{2} + \frac{1}{2}(3\alpha-4)p + \frac{1}{4}\alpha^{2}] \sqrt{\frac{1}{\alpha}(2-p)(p+2-\alpha)^{3}} \right],$$
(16)

where $p \in I_{\alpha}, \alpha \in (-\infty, 0) \cup (0, \frac{4}{3}].$

THEOREM 2. The envelope of the straight lines going through $g_0(w)$ and $g_1(w)$, while w is of the form (15) and $\alpha \in (-\infty, 0) \cup (0, \frac{4}{3}]$, coincides with the curve $\Psi_{\alpha}(I_{\alpha})$.

PROOF. Let w be of the form (15) and $\alpha \in (-\infty, 0) \cup (0, \frac{4}{3}]$. Denote

$$\sqrt{\alpha + (4 - \alpha)e^{i\varphi}} = \varrho e^{i\theta},\tag{17}$$

where the branch of the square root is chosen as in (15).

From this we observe that $\theta \in (0, \frac{\pi}{2})$ and that the sign of $\varrho - 2$ depends on α . Namely, for $\alpha \in (0, \frac{4}{3}]$ we have $\varrho - 2 < 0$ and for $\alpha \in (-\infty, 0)$ we have $\varrho - 2 > 0$.

Applying (17) we obtain

$$g_0(w) = \frac{1}{\varrho}\cos\theta - i\frac{1}{\varrho}\sin\theta$$

and

$$g_1(w) = \frac{(\varrho - \frac{4}{\varrho})\cos\theta}{\varrho^2 + \frac{16}{\varrho^2} - 8\cos 2\theta} - i\frac{(\varrho + \frac{4}{\varrho})\sin\theta}{\varrho^2 + \frac{16}{\varrho^2} - 8\cos 2\theta}$$

The real equation of straight lines going through $g_0(w)$ and $g_1(w)$ can be written in the form

$$[4 - \varrho^2 (1 + 2\cos 2\theta)]x \tan \theta + [4 + \varrho^2 (1 - 2\cos 2\theta)]y + 2\varrho \sin \theta = 0.$$
(18)

We conclude from (17) that

$$\varrho^2 = \sqrt{(4-\alpha)^2 + 2\alpha(4-\alpha)\cos\varphi + \alpha^2},$$

$$\cot 2\theta = \frac{\alpha + (4-\alpha)\cos\varphi}{(4-\alpha)\sin\varphi}.$$
(19)

For convenience let

$$p = \frac{1}{2}\sqrt{(4-\alpha)^2 + 2\alpha(4-\alpha)\cos\varphi + \alpha^2}.$$
 (20)

Hence, if $\varphi \in [0, \pi]$ then $p \in I_{\alpha}$.

From (19) we derive

$$\varrho^{2} = 2p,
\varrho^{2} \cos 2\theta = \frac{2}{\alpha}(p^{2} - 4 + 2\alpha),
\varrho^{2} \sin 2\theta = \frac{2}{|\alpha|}\sqrt{(4 - p^{2})(p^{2} - (2 - \alpha)^{2})},$$
(21)

and then

$$\varrho \cos \theta = \frac{1}{|\alpha|} \sqrt{\alpha(p+2)(p-2+\alpha))}, \\
\varrho \sin \theta = \frac{1}{|\alpha|} \sqrt{\alpha(2-p)(p+2-\alpha))}.$$
(22)

Applying (19) and (22) in (18) we obtain the equation equivalent to (18):

$$\sqrt{\frac{\alpha(p+2)}{p-2+\alpha}}(4-\alpha-2p)x + \sqrt{\frac{\alpha(2-p)}{p+2-\alpha}}(4-\alpha+2p)y + \alpha = 0.$$
 (23)

The envelope of the family of these lines is obtained as the solution of the system

$$\begin{cases} \sqrt{\frac{\alpha(p+2)}{p-2+\alpha}}(4-\alpha-2p)x + \sqrt{\frac{\alpha(2-p)}{p+2-\alpha}}(4-\alpha+2p)y + \alpha = 0\\ \sqrt{\frac{p-2+\alpha}{\alpha(p+2)}}\frac{4p^2+2(3\alpha-4)p+\alpha^2}{(p-2+\alpha)^2}x + \sqrt{\frac{p+2-\alpha}{\alpha(2-p)}}\frac{-4p^2+2(3\alpha-4)p-\alpha^2}{(p+2-\alpha)^2} = 0. \end{cases}$$

In this way we get the curve given by (16). \Box

REMARK. 1. In the limit case, taking into account $\lim_{\alpha\to 0} \Psi_{\alpha}(I_{\alpha})$, we obtain the curve $\Psi((-\pi,\pi])$ defined in Theorem 1. One can calculate this limit putting $s = \frac{p-2+\alpha}{\alpha}$ into the equation of Ψ_{α} (in this case $s \in [0,1]$). 2. The curve $\Psi_{\alpha}(I_{\alpha})$ has one singularity for

$$p_{0} = \frac{1}{12}\sqrt{3(-112+80\alpha-9\alpha^{2}+\sqrt{(3\alpha-4)(27\alpha^{3}-508\alpha^{2}+3280\alpha-4672)}}$$
(24)

while $\alpha < -12$ (if $\alpha = -12$ then $p_0 = 2$). It can be concluded from

$$(x'(p))^2 + (y'(p))^2 =$$

$$\frac{p[24p^4 + (9\alpha^2 - 80\alpha + 112)p^2 - 2(2-\alpha)(\alpha^2 - 16\alpha + 16)]}{8\alpha(4-\alpha)(4-p^2)(3p^2 + 4 - 2\alpha)^4}$$

and the fact that p_0 is the only zero of this expression in $(2, 2 - \alpha)$. **3.** Using (22) one can obtain a new complex parametric equation of Γ_{α}

$$w(p) = \frac{1}{|\alpha|} \left(\sqrt{\alpha(p+2)(p-2+\alpha)} + i\sqrt{\alpha(2-p)(p+2-\alpha)} \right) , \ p \in I_{\alpha},$$
(25)

which is useful in the following consideration.

First we need

LEMMA 1. Let $h(p) = \arg [g_1(w(p)) - g_0(w(p))]$, where g_0, g_1 are given by (6), the argument is taken from the interval $(-2\pi, 0]$, and let w(p)be given by (25). Then the range of h is $[-\frac{3\pi}{2}, -\frac{\pi}{2})$. Moreover, if $\alpha < 0$ then h is decreasing in $(2, 2 - \alpha)$, and if $\alpha \in (0, \frac{4}{3}]$ then h is increasing in $(2 - \alpha, 2)$.

PROOF. Let w be defined by (15) and let $k(\varphi) = \arg[g_1(w) - g_0(w)]$. The function k is decreasing for $\varphi \in (0, \pi)$ because

$$k(\varphi) = -\left[\frac{1}{2}\arg(\alpha + (4-\alpha)e^{i\varphi}) + \arg(e^{i\varphi} - 1)\right].$$

Furthermore, by (20) for $\alpha \in (0, \frac{4}{3}]$, p is a decreasing function of φ . Hence, there exists its inverse function $\varphi = \varphi(p)$ and it is decreasing for $p \in [2 - \alpha, 2]$. Combining these facts, we conclude that $h(p) = k(\varphi(p))$ is an increasing function for $p \in (2 - \alpha, 2)$.

In the second case, for $\alpha < 0$, it follows from (20) that p is an increasing function of φ , and consequently, $h(p) = k(\varphi(p))$ is a decreasing function for $p \in (2 - \alpha, 2)$.

THEOREM 3. The envelope of the line segments $\langle \langle g_0(w), g_1(w) \rangle \rangle$, where g_0, g_1 are given by (6) and w is given by (15), is a convex curve of the form

1. $\Psi_{\alpha}((2-\alpha,2))$ for $\alpha \in (0,\frac{4}{3}]$, 2. $\Psi_{\alpha}((2,d_{\alpha}))$ for $\alpha \in [-2,0)$, 3. $\Psi_{\alpha}((c_{\alpha},d_{\alpha}))$ for $\alpha \in (-\infty,-2)$, where Ψ_{α} is given by (16) and

$$c_{\alpha} = \sqrt{-\frac{1}{2}(2-\alpha)\alpha}, \quad d_{\alpha} = \sqrt{\frac{1}{2}(\alpha^2 - 8\alpha + 8)}.$$

In this theorem and further on, the convexity of a curve means that the tangent line to this curve lies below the curve.

PROOF. According to Theorem 2, $\Psi_{\alpha}(I_{\alpha})$, $\alpha \in (-\infty, 0) \cup (0, \frac{4}{3}]$ is the envelope of straight lines going through $g_0(w)$ and $g_1(w)$, $w \in \Gamma_{\alpha}$.

This curve (whole or only a part of it) is also the envelope of line segments $\langle \langle g_0(w), g_1(w) \rangle \rangle$, but only for these p which satisfy the inequality

$$\arg g_1(w(p)) \le \arg \Psi_\alpha(p) \le \arg g_0(w(p)) , \ p \in I_\alpha.$$
(26)

For $w \in \Gamma_{\alpha}$ (w is of the form (15)) we have

$$\arg g_1(w) = \arg[(\varrho^2 - 4)\cos\theta - i(\varrho^2 + 4)\sin\theta],$$

$$\arg g_0(w) = \arg[\cos\theta - i\sin\theta] = -\theta.$$
(27)

Let $\alpha \in (0, \frac{4}{3}]$ and let Ψ_{α} be given by (16).

It follows from (27) that $\arg g_1(w) \in (-\pi, -\frac{\pi}{2})$ and $\arg g_0(w) \in (-\frac{\pi}{2}, 0)$. Moreover, $\arg \Psi_{\alpha}(p) \in (-\frac{\pi}{2}, 0)$ for $p \in (2 - \alpha, 2)$. Since the left hand side of (26) is fulfilled, it is sufficient to discuss only the right hand side inequality. We rewrite it as follows

$$\frac{p^2 + \frac{1}{2}(3\alpha - 4)p + \frac{1}{4}\alpha^2}{p^2 - \frac{1}{2}(3\alpha - 4)p + \frac{1}{4}\alpha^2}\sqrt{\frac{(2-p)(p+2-\alpha)^3}{(2+p)(p-2+\alpha)^3}} \ge \sqrt{\frac{(2-p)(p+2-\alpha)}{(2+p)(p-2+\alpha)}}$$

and equivalently

$$[p^{2} + \frac{1}{2}(3\alpha - 4)p + \frac{1}{4}\alpha^{2}](p + 2 - \alpha) \ge [p^{2} - \frac{1}{2}(3\alpha - 4)p + \frac{1}{4}\alpha^{2}](p - 2 + \alpha),$$

and further on

$$p^2 + \frac{1}{2}\alpha(2 - \alpha) \ge 0,$$

which holds for $\alpha \in (0, \frac{4}{3}]$ and $p \in [2 - \alpha, 2]$. Therefore, the inequality(26) is true for $\alpha \in (0, \frac{4}{3}]$ and $w \in \Gamma_{\alpha}$. We conclude from this that the curve $\Psi_{\alpha}(I_{\alpha})$ is really the envelope of line segments $\langle \langle g_0(w), g_1(w) \rangle \rangle$ for $\alpha \in (0, \frac{4}{3}]$.

Let now $\alpha \in (-\infty, 0)$ and $w \in \Gamma_{\alpha}$. From (27) we obtain $\arg g_1(w) \in (-\frac{\pi}{2}, 0)$ and $\arg g_0(w) \in (-\frac{\pi}{2}, 0)$. The left hand side of (26) is equivalent to

$$-\frac{p^2 + \frac{1}{2}(3\alpha - 4)p + \frac{1}{4}\alpha^2}{p^2 - \frac{1}{2}(3\alpha - 4)p + \frac{1}{4}\alpha^2}\sqrt{\frac{(2-p)(p+2-\alpha)^3}{(2+p)(p-2+\alpha)^3}} \le \frac{p+2}{p-2}\sqrt{\frac{(2-p)(p+2-\alpha)}{(2+p)(p-2+\alpha)}}$$

and then

$$-[p^{2} + \frac{1}{2}(3\alpha - 4)p + \frac{1}{4}\alpha^{2}][-p^{2} + \alpha p - 2(2 - \alpha)]$$

$$\geq [p^2 - \frac{1}{2}(3\alpha - 4)p + \frac{1}{4}\alpha^2][p^2 + \alpha p - 2(2 - \alpha)].$$

After simple calculations it takes form

$$(4-\alpha)p[p^2 - \frac{1}{2}(\alpha^2 - 8\alpha + 8)] \ge 0.$$
(28)

The inequality (28), and in consequence, the inequality $\arg g_1(w) \leq \arg \Psi_{\alpha}(p)$ holds only for $p \in [2, \sqrt{\frac{1}{2}(\alpha^2 - 8\alpha + 8)}]$ because of $2 < \sqrt{\frac{1}{2}(\alpha^2 - 8\alpha + 8)} < 2 - \alpha$.

The right hand side of (26) turns to

$$\frac{p^2 + \frac{1}{2}(3\alpha - 4)p + \frac{1}{4}\alpha^2}{p^2 - \frac{1}{2}(3\alpha - 4)p + \frac{1}{4}\alpha^2}\sqrt{\frac{(2-p)(p+2-\alpha)^3}{(2+p)(p-2+\alpha)^3}} \le -\sqrt{\frac{(2-p)(p+2-\alpha)}{(2+p)(p-2+\alpha)}}.$$
(29)

Hence

$$[p^{2} + \frac{1}{2}(3\alpha - 4)p + \frac{1}{4}\alpha^{2}](p + 2 - \alpha) \le [p^{2} - \frac{1}{2}(3\alpha - 4)p + \frac{1}{4}\alpha^{2}](p - 2 + \alpha),$$

and then

$$p^2 + \frac{1}{2}\alpha(2-\alpha) \ge 0.$$
 (30)

It is easy to check that if $\alpha \in (-2,0)$ and $p \in [2, 2 - \alpha]$, then (30) holds. It means that (29) is fulfilled. If $\alpha \in (-\infty, -2)$ then (30) is satisfied only for $p \in [\sqrt{-\frac{1}{2}\alpha(2-\alpha)}, 2-\alpha]$.

Our next goal is to prove the convexity of the above derived envelope of the line segments.

In view of Remark 2 the envelope of the straight lines going through $g_0(w)$ and $g_1(w)$ has no singularities for $\alpha \in [-12, 0) \cup (0, \frac{4}{3}]$. If $\alpha < -12$ then this envelope has the only singularity corresponding to p_0 given by(24), but $p_0 < c_{\alpha}$. Indeed,

$$-112 + 80\alpha - 9\alpha^{2} + \sqrt{(3\alpha - 4)(27\alpha^{3} - 508\alpha^{2} + 3280\alpha - 4672)} < -24(2 - \alpha)\alpha$$

and then

$$(\alpha - 2)(7\alpha + 4)(\alpha - 4) > 0,$$

which is true for $\alpha < -12$.

Therefore, the envelope of the line segments $\langle \langle g_0(w), g_1(w) \rangle \rangle$ has no singularities, and, by Lemma 1, is convex. \Box

Let $\alpha < 0$ and

$$\Phi_{\alpha}(p) = \frac{1}{2(4-\alpha)} \left[\sqrt{\alpha \frac{p-2+\alpha}{p+2}} - i\sqrt{\alpha \frac{p+2-\alpha}{2-p}} \right] , \ p \in (2, 2-\alpha],$$
(31)

$$\Upsilon_{\alpha}(p) = \frac{-1}{2\alpha p} \left[\sqrt{\alpha(p+2)(p-2+\alpha)} - i\sqrt{\alpha(2-p)(p+2-\alpha)} \right], \quad (32)$$

 $p \in [2, 2 - \alpha]$. For Φ_{α} and Υ_{α} we have

$$\Phi_{\alpha}\left((2,2-\alpha)\right) = \{g_1(w) : w \in \Gamma_{\alpha}\} \text{ and } \Upsilon_{\alpha}\left((2,2-\alpha)\right) = \{g_0(w) : w \in \Gamma_{\alpha}\}.$$

Let E_{α} be a bounded domain whose boundary is of the form:

- $[0, \frac{1}{2}) \cup \Psi_{\alpha}\left([2-\alpha, 2]\right) \cup \left(-i(0, \frac{\sqrt{4-2\alpha}}{8-3\alpha})\right)$ for $\alpha \in (0, \frac{4}{3}]$,
- $[0,\frac{1}{2}) \cup \Psi_{\alpha}\left([2,d_{\alpha}]\right) \cup \Phi_{\alpha}\left((d_{\alpha},2-\alpha]\right) \cup \left(-i(0,\frac{\sqrt{4-2\alpha}}{8-2\alpha})\right)$ for $\alpha \in [-2,0),$
- $[0, \frac{1}{2}) \cup \Upsilon_{\alpha}([2, c_{\alpha})) \cup \Psi_{\alpha}([c_{\alpha}, d_{\alpha}]) \cup \Phi_{\alpha}((d_{\alpha}, 2 \alpha]) \cup \left(-i(0, \frac{\sqrt{4-2\alpha}}{8-2\alpha})\right)$ for $\alpha \in (-\infty, -2)$.

THEOREM 4. For each $w \in \Gamma_{\alpha}$ and $\alpha \in (-\infty, 0) \cup (0, \frac{4}{3}]$:

$$E_{\alpha} \cap \{g(w) : g \in \mathcal{T}^{(\epsilon)}\} = \emptyset,$$
(33)

$$cl(E_{\alpha}) \cap \{g(w) : g \in \mathcal{T}^{(\epsilon)}\}$$
 isaone – pointset. (34)

We need four lemmas to prove Theorem 4.

LEMMA 2. For $\alpha < -2$ and $p \in (2, c_{\alpha})$ we have $\arg [\Phi_{\alpha}(p) - \Upsilon_{\alpha}(p)] - \arg \Upsilon'_{\alpha}(p) > 0$, where the arguments of $\Phi_{\alpha}(p) - \Upsilon_{\alpha}(p)$ and $\Upsilon'_{\alpha}(p)$ are taken from the interval $(-\frac{3\pi}{2}, -\frac{\pi}{2})$.

PROOF. Let $\alpha < -2$. Firstly, we are going to prove that $w(c_{\alpha})$ is the only point, given by w(p), $p \in (2, 2-\alpha)$, for which the tangent line to the curve $\Upsilon_{\alpha}(I_{\alpha})$ coincides with the straight line going through $g_0(w)$ and $g_1(w)$.

Let us discuss the equation

$$\operatorname{Re}\left[\Phi_{\alpha}(p)-\Upsilon_{\alpha}(p)\right]\cdot\operatorname{Im}\Upsilon_{\alpha}'(p)=\operatorname{Im}\left[\Phi_{\alpha}(p)-\Upsilon_{\alpha}(p)\right]\cdot\operatorname{Re}\Upsilon_{\alpha}'(p).$$

This equation, by (31) and (32), is equivalent to

$$[-\alpha p + 4(2 - \alpha)][4p^2 - 2\alpha p - 2(4 - \alpha)(2 - \alpha)] =$$
$$[\alpha p + 4(2 - \alpha)][4p^2 + 2\alpha p + 2(4 - \alpha)(2 - \alpha)]$$

and hence $p^2 = -\frac{1}{2}\alpha(2-\alpha)$. Thus the expression $\arg \left[\Phi_{\alpha}(p) - \Upsilon_{\alpha}(p)\right] - \arg \Upsilon_{\alpha}'(p)$ does not change the sign for all $p \in (2, c_{\alpha})$. Moreover,

$$\arg\left[\Phi_{\alpha}(p) - \Upsilon_{\alpha}(p)\right] = -\pi - \arctan\left(\frac{2p - (4 - \alpha)}{2p + (4 - \alpha)}\sqrt{\frac{(p + 2)(p + 2 - \alpha)}{(p - 2)(2 - \alpha - p)}}\right)$$

and for $p \in (2,4)$ we have $\operatorname{Re}\Upsilon'_{\alpha}(p) < 0$ and $\operatorname{Im}\Upsilon'_{\alpha}(p) < 0$. Thus

$$\arg \Upsilon'_{\alpha}(p) = -\pi - \arctan\left(\frac{\alpha p + 4(2-\alpha)}{\alpha p - 4(2-\alpha)}\sqrt{\frac{(p+2)(2-\alpha-p)}{(p-2)(p+2-\alpha)}}\right)$$

For $p \in (2, 4)$ the inequality

$$\arg\left[\Phi_{\alpha}(p) - \Upsilon_{\alpha}(p)\right] - \arg\Upsilon_{\alpha}'(p) > 0 \tag{35}$$

is equivalent to

$$\frac{\alpha p + 4(2-\alpha)}{\alpha p - 4(2-\alpha)} \sqrt{\frac{(p+2)(2-\alpha-p)}{(p-2)(p+2-\alpha)}} > \frac{2p - (4-\alpha)}{2p + (4-\alpha)} \sqrt{\frac{(p+2)(p+2-\alpha)}{(p-2)(2-\alpha-p)}}$$

and, in consequence, to $p^2 < -\frac{1}{2}\alpha(2-\alpha)$. Therefore, (35) holds for $p \in (2,4) \cap (2,c_{\alpha})$.

The function $\arg [\Phi_{\alpha}(p) - \Upsilon_{\alpha}(p)] - \arg \Upsilon'_{\alpha}(p)$ is continuous for $p \in (2, 2 - \alpha)$, positive for $p \in (2, 4) \cap (2, c_{\alpha})$ and its only zero is c_{α} . Thus, (35) holds for $p \in (2, c_{\alpha})$. \Box

Proofs of next three lemmas will be omitted.

LEMMA 3. For $\alpha < 0$ the function $\arg \Upsilon_{\alpha}(p)$ is decreasing in $(2, 2 - \alpha)$.

LEMMA 4. The function $\arg \Upsilon'_{\alpha}(p)$ is

- 1. increasing in $(2, 2 \alpha)$ for $\alpha \in [-4, 0)$,
- 2. decreasing in $(2, b_{\alpha})$ and increasing in $(b_{\alpha}, 2 \alpha)$ for $\alpha < -4$,

where $b_{\alpha} = \sqrt{6(2-\alpha)}$.

LEMMA 5. For $\alpha < 0$ the function $\arg \Phi'_{\alpha}(p)$ is increasing in $(2, 2 - \alpha)$. PROOF OF THEOREM 4.

We will prove this theorem only for $\alpha < -4$. For other α the proof is easier, because we need only some elements of the argument presented below. Let w = w(p) be given by (25). Denote by B_p a closed and convex set whose boundary consists of a ray l_p with the end point in $g_0(w(p))$ and going through $2g_0(w(p))$, a ray k_p with the end point in $g_1(w(p))$ and going through $2g_1(w(p))$, and a segment $\langle \langle g_0(w(p)), g_1(w(p)) \rangle \rangle$.

The set $\{g(w(p)) : g \in \mathcal{T}^{(\epsilon)}\}, p \in (2, 2 - \alpha)$ is a segment of the disk whose boundary is given by (5). Moreover, $0 \notin \{g(w(p)) : g \in \mathcal{T}^{(\epsilon)}\}$. From it and from the fact that w = 0 belongs to the circle (5) we conclude that for $p \in (2, 2 - \alpha)$

$$\{g(w(p)): g \in \mathcal{T}^{(\in)}\} \subset \mathcal{B}_{\mathcal{N}}.$$

Let $p \in (2, b_{\alpha}]$. From Lemmas 1 - 4 it yields that $B_p \subset$

$$\{u \in \mathbb{C} : \arg \left[g_1(w(p)) - g_0(w(p))\right] \le \arg \left[u - g_0(w(p))\right] \le \arg g_0(w(p))\}$$

$$\subset \{u \in \mathbb{C} : \arg \left[g_1(w(b_\alpha)) - g_0(w(b_\alpha))\right] \le$$

$$\arg \left[u - g_0(w(p))\right] \le \arg g_0(w(p))\}$$

$$\subset \{u \in \mathbb{C} : \arg \frac{d}{dx} g_0(w(p))|_{p=b_\alpha} \le \arg \left[u - g_0(w(p))\right] \le \arg g_0(w(p))\}.$$

Let $p \in (b_{\alpha}, c_{\alpha})$. From Lemmas 1 - 4 we have $B_p \subset$

$$\{ u \in \mathbb{C} : \arg\left[g_1(w(p)) - g_0(w(p))\right] \le \arg\left[u - g_0(w(p))\right] \le \arg g_0(w(p)) \}$$

$$\subset \{ u \in \mathbb{C} : \arg\left[\frac{d}{dp} g_0(w(p)) \le \arg\left[u - g_0(w(p))\right] \le \arg g_0(w(p)) \} .$$

It means that for $p \in (2, c_{\alpha})$ there is $B_p \cap E_{\alpha} = \emptyset$. Therefore, $\{g(w(p)) : g \in \mathcal{T}^{(\in)}\} \cap \mathcal{E}_{\alpha} = \emptyset$ and $\{g(w(p)) : g \in \mathcal{T}^{(\in)}\} \cap \downarrow \updownarrow (\mathcal{E}_{\alpha}) = \{\}_{\prime}(\exists (\mathcal{I}_{\gamma}))\}.$

Let $p \in (c_{\alpha}, d_{\alpha})$. From Lemma 1, from the inequalities $\arg g_0(w(c_{\alpha})) < \arg g_0(w(p))$ and $\arg g_1(w(p)) < \arg g_1(w(d_{\alpha}))$ and from the fact that the segment $\langle \langle g_0(w(p)), g_1(w(p)) \rangle \rangle$ is tangent to ∂E_{α} (or equivalently to $\Psi([c_{\alpha}, d_{\alpha}]))$ we obtain $B_p \cap E_{\alpha} = \emptyset$, and thus $\{g(w(p)) : g \in \mathcal{T}^{(\epsilon)}\} \cap \mathcal{E}_{\alpha} = \emptyset$. Furthermore, the only common point of $\{g(w(p)) : g \in \mathcal{T}^{(\epsilon)}\}$ and $cl(E_{\alpha})$ is a point of tangency.

Let $p \in (d_{\alpha}, 2 - \alpha)$. From Lemma 1, Lemma 4 and Lemma 5 we have

$$\begin{split} B_p &\subset \left\{ u \in \mathbb{C} : \arg g_1(w(p)) \leq \arg \left[u - g_1(w(p)) \right] \leq \\ &\leq \arg \left[g_0(w(p)) - g_1(w(p)) \right] \right\} \\ &\subset \left\{ u \in \mathbb{C} : \arg g_1(w(p)) \leq \arg \left[u - g_1(w(p)) \right] \leq \\ &\leq \arg \left[g_0(w(d_\alpha)) - g_1(w(d_\alpha)) \right] \right\} \\ &= \left\{ u \in \mathbb{C} : \arg g_1(w(p)) \leq \arg \left[u - g_1(w(p)) \right] \leq \arg \frac{d}{dp} g_1(w(p))|_{p=d_\alpha} \right\}. \end{split}$$

Hence $B_p \cap E_{\alpha} = \emptyset$ and $\{g(w(p)) : g \in \mathcal{T}^{(\in)}\} \cap \mathcal{E}_{\alpha} = \emptyset$. Moreover, $\{g(w(p)) : g \in \mathcal{T}^{(\in)}\} \cap \downarrow \updownarrow (\mathcal{E}_{\alpha}) = \{\}_{\infty}(\supseteq(\mathcal{I}))\}.$

Let
$$A_{\alpha} = l^{-1}(D_{\alpha})$$
, i.e. $A_{\alpha} = \Omega_{\alpha} \cap \{z \in \Delta : \operatorname{Re} z > 0, \operatorname{Im} z < 0\}$.

COROLARY. $K_{T^{(2)}}(A_{\alpha}) = E_{\alpha}.$

PROOF. For each $f \in T^{(2)}$ and $z \in \Delta$ there are $\text{Im}z = 0 \Rightarrow \text{Im}f(z) = 0$ and $\text{Re}z = 0 \Rightarrow \text{Re}f(z) = 0$. Hence

$$E_{\alpha} \cap \{f(z): f \in T^{(2)}, z \in \partial A_{\alpha}, z \neq 1, \operatorname{Re} z \operatorname{Im} z = 0\} = \emptyset$$

This and Theorem 4 leads to

$$E_{\alpha} \cap \{f(z): f \in T^{(2)}, z \in \partial A_{\alpha}, z \neq 1\} = \emptyset.$$

Moreover, if z = 1 is a regular point of $f \in T^{(2)}$ then $f(1) \geq \frac{1}{2}$ (because for $x \in (0, 1)$ there is $f(x) \geq \frac{x}{1+x^2}$). It means that $E_{\alpha} \subset f(A_{\alpha})$ for each $f \in T^{(2)}$. Therefore, $E_{\alpha} \subset K_{T^{(2)}}(A_{\alpha})$. By the definition of the Koebe domain, $K_{T^{(2)}}(A_{\alpha}) \subset \bigcap_{\varepsilon \in [0,1]} f_{\varepsilon}(A_{\alpha})$.

The univalence of f_{ε} in A_{α} (by Theorem C) and (33) leads to $\bigcap_{\varepsilon \in [0,1]} f_{\varepsilon}(A_{\alpha}) =$

 E_{α} . From the above argument $E_{\alpha} \subset K_{T^{(2)}}(A_{\alpha}) \subset E_{\alpha}$. \Box

THEOREM 5. The set $K_{T^{(2)}}(\Omega_{\alpha})$, $\alpha \in (-\infty, 0) \cup (0, \frac{4}{3}]$ is a bounded domain, symmetric with respect to both axes of the complex plane. The boundary of this domain in the fourth quadrant coincides with:

1. $\Psi_{\alpha}([2-\alpha,2])$ for $\alpha \in (0,\frac{4}{3}]$, 2. $\Psi_{\alpha}([2,d_{\alpha}]) \cup \Phi_{\alpha}((d_{\alpha},2-\alpha])$ for $\alpha \in [-2,0)$, 3. $\Upsilon_{\alpha}([2,c_{\alpha})) \cup \Psi_{\alpha}([c_{\alpha},d_{\alpha}]) \cup \Phi_{\alpha}((d_{\alpha},2-\alpha])$ for $\alpha \in (-\infty,-2)$,

where Ψ_{α} , Φ_{α} , Υ_{α} are given by (15), (29), (30) respectively, and $c_{\alpha} = \sqrt{-\frac{1}{2}(2-\alpha)\alpha}$, $d_{\alpha} = \sqrt{\frac{1}{2}(\alpha^2 - 8\alpha + 8)}$.

PROOF. Let us denote $G_{\alpha} = \operatorname{int}(\overline{(E_{\alpha} \cup \overline{E_{\alpha}} \cup (-E_{\alpha}) \cup (-\overline{E_{\alpha}}))})$. **I.** Let $\alpha \in (0, \frac{4}{3}]$. For each $f \in T^{(2)}$ the set $f(\Omega_{\alpha})$ is symmetric with respect to both axes of the complex plane. Therefore, by Corollary 1,

$$E_{\alpha} \cup \overline{E_{\alpha}} \cup (-E_{\alpha}) \cup (-\overline{E_{\alpha}}) \subset f(\Omega_{\alpha}),$$

 \mathbf{SO}

$$G_{\alpha} \setminus \{ z \in \mathbb{C} : \operatorname{Re} z \operatorname{Im} z = 0 \} \subset f(\Omega_{\alpha}).$$

If $0 \le x < 1$ then $f(x) \ge \frac{x}{1+x^2}$ and if -1 < x < 0 then $f(x) \le \frac{x}{1+x^2}$. Hence for each $f \in T^{(2)}$

$$f((-1,1)) \supset (-\frac{1}{2},\frac{1}{2}) = G_{\alpha} \cap \{z \in \mathbb{C} : \operatorname{Im} z = 0\},$$
 (36)

and then

$$G_{\alpha} \setminus \{ z \in \mathbb{C} : \operatorname{Re} z = 0 \} \subset f(\Omega_{\alpha}).$$

This leads to

$$G_{\alpha} \setminus \{ z \in \mathbb{C} : \operatorname{Re} z = 0 \} \subset K_{T^{(2)}}(\Omega_{\alpha}).$$

Our next goal is to prove that the line segment $G_{\alpha} \cap \{z \in \mathbb{C} : \operatorname{Re} z = 0\}$ is also included in $K_{T^{(2)}}(\Omega_{\alpha})$.

Let us suppose that there exists a point iy_0 such that $iy_0 \notin K_{T^{(2)}}(\Omega_\alpha)$. It means there exists a function $f_* \in T^{(2)}$ such that $f_*(\Omega_\alpha) \not\supseteq iy_0$.

Let α_0 be taken in such a way that $0 < \alpha_0 < \alpha$ and $iy_0 \in G_{\alpha_0}$ (existence of such α_0 follows from the definition of G_{α} and from the fact that iy_0 is an interior point of this segment). We have $\Omega_{\alpha_0} \subset \Omega_{\alpha}$. Moreover, these sets have only two common points z = -1 and z = 1.

Since f_{\star} is a typically real function, we can see that $f_{\star}(-1) \neq iy_0$ and $f_{\star}(1) \neq iy_0$. Hence there exists a neighborhood U of the point iy_0 such that $U \cap f_{\star}(\Omega_{\alpha_0}) = \emptyset$.

This gives $U \cap G_{\alpha_0} = \emptyset$, a contradiction, because

$$G_{\alpha_0} \setminus \{ z \in \mathbb{C} : \operatorname{Re} z = 0 \} \subset f(\Omega_{\alpha_0}).$$

The above given argument leads to $G_{\alpha} \subset K_{T^{(2)}}(\Omega_{\alpha})$.

From Corollary 1 and the symmetry of $f(\Omega_{\alpha})$ with respect to both axes of the complex plane we deduce $\bigcap_{\varepsilon \in [0,1]} f_{\varepsilon}(\Omega_{\alpha}) = G_{\alpha}$ and then $K_{T^{(2)}}(\Omega_{\alpha}) \subset G_{\alpha}$. Hence $K_{T^{(2)}}(\Omega_{\alpha}) = G_{\alpha}$. **II.** Let $\alpha < 0$. We will prove that

$$G_{\alpha} \cap \{f(z): f \in T^{(2)}, z \in \partial \Omega_{\alpha}, z \neq \pm 1\} = \emptyset.$$
(37)

According to Theorem 4,

$$E_{\alpha} \cap \{f(z): f \in T^{(2)}, z \in \partial A_{\alpha}, \operatorname{RezIm} z \neq 0\} = \emptyset$$

All functions belonging to $T^{(2)}$ are univalent in the lens H [1,3], and then in Ω_{α} (now $\Omega_{\alpha} \subset H$). From this we obtain

$$f(A_{\alpha}) \subset \left\{ z \in \mathbb{C} : \operatorname{Re} z > 0 \operatorname{Im} z < 0 \right\},\$$

and, as a consequence,

$$G_{\alpha} \cap \{f(z): f \in T^{(2)}, z \in \partial \Omega_{\alpha}, \operatorname{RezIm} z \neq 0\} = \emptyset.$$
 (38)

Observe that

$$\partial\Omega_{\alpha} \cap \{z \in \mathbb{C} : \operatorname{Re} z = 0\} = \left\{ \pm \frac{1}{2} \left(\sqrt{8 - 2\alpha} - \sqrt{4 - 2\alpha} \right) i \right\}$$

and

$$\partial G_{\alpha} \cap \{ z \in \mathbb{C} : \operatorname{Re} z = 0 \} = \left\{ \pm \frac{\sqrt{4 - 2\alpha}}{8 - 2\alpha} i \right\}$$

Since $\frac{1}{i}f\left(\frac{1}{2}\left(\sqrt{8-2\alpha}-\sqrt{4-2\alpha}\right)i\right) \ge \frac{\sqrt{4-2\alpha}}{8-2\alpha}$, we have

$$\left\{f\left(\frac{1}{2}\left(\sqrt{8-2\alpha}-\sqrt{4-2\alpha}\right)i\right):\ f\in T^{(2)}\right\}\cap G_{\alpha}=\emptyset.$$
 (39)

The inclusion (36) also holds for $\alpha < 0$. Combining (38), (39) and (36) we can write that for each $f \in T^{(2)}$

$$G_{\alpha} \subset f(\Omega_{\alpha})$$

Hence

$$G_{\alpha} \subset K_{T^{(2)}}(\Omega_{\alpha}) \subset \bigcap_{\varepsilon \in [0,1]} f_{\varepsilon}(\Omega_{\alpha}).$$

From the univalence of f_{ε} in Ω_{α} it follows that $\bigcap_{\varepsilon \in [0,1]} f_{\varepsilon}(\Omega_{\alpha}) = G_{\alpha}$. \Box

The specific significance of the set $\Omega_{\frac{4}{3}}$ is presented in Theorem 6. We know that the equation $g'_{\varepsilon}(w) = 0$, where g_{ε} is defined by (6) and $\varepsilon \in$ $(0, \frac{8}{9})$, has four different solutions. From the univalence of $z \mapsto z + \frac{1}{z}$, while $z \in \Delta$, we conclude that the equation $f'_{\varepsilon}(z) = 0$, where f_{ε} is defined by (7) and $\varepsilon \in (0, \frac{8}{9})$, has also four different solutions in Δ : z_{ε} , $\overline{z_{\varepsilon}}$, $-z_{\varepsilon}$, $-\overline{z_{\varepsilon}}$ (we choose z_{ε} to satisfy $\operatorname{Re} z_{\varepsilon} > 0$, $\operatorname{Im} z_{\varepsilon} > 0$). Moreover, $z_0 = 1$, $z_{8/9} = \frac{\sqrt{3}}{3}i$ are the only solutions of $f'_0(z) = 0$ and $f'_{8/9}(z) = 0$ respectively, in the set $\{z \in \Delta : \operatorname{Re} z_{\varepsilon} \ge 0, \operatorname{Im} z_{\varepsilon} \ge 0\}$.

THEOREM 6. $\partial K_{T^{(2)}}(\Omega_{\frac{4}{3}}) \cap \{z \in \mathbb{C} : \operatorname{Re} z \ge 0, \operatorname{Im} z \ge 0\} = \{f_{\varepsilon}(z_{\varepsilon}) : \varepsilon \in [0, \frac{8}{9}]\}.$

PROOF. By definition of f_{ε} and g_{ε} , $f'_{\varepsilon}(z) = 0$ if and only if $g'_{\varepsilon}(z + \frac{1}{z}) = 0$. Let $w = z + \frac{1}{z}$. For $\varepsilon \in [0, \frac{8}{9}]$ we have $g'_{\varepsilon}(w) = 0$ iff

$$w = \pm \left(\sqrt{(\sqrt{1-\varepsilon}+1)(3\sqrt{1-\varepsilon}-1)} \pm i\sqrt{(1-\sqrt{1-\varepsilon})(1+3\sqrt{1-\varepsilon})}\right).$$

Since $\operatorname{Re} z_{\varepsilon} \geq 0$, $\operatorname{Im} z_{\varepsilon} \geq 0$, z_{ε} satisfies the equation

$$z + \frac{1}{z} = \sqrt{(\sqrt{1-\varepsilon}+1)(3\sqrt{1-\varepsilon}-1)} - i\sqrt{(1-\sqrt{1-\varepsilon})(1+3\sqrt{1-\varepsilon})}$$

From this $f_{\varepsilon}(z_{\varepsilon}) =$

$$\frac{g_{\varepsilon}\left(\sqrt{(\sqrt{1-\varepsilon}+1)(3\sqrt{1-\varepsilon}-1)}-i\sqrt{(1-\sqrt{1-\varepsilon})(1+3\sqrt{1-\varepsilon})}\right)}{\left(4-3\varepsilon+i\sqrt{\varepsilon(8-9\varepsilon)}\right)\left(\sqrt{2-3\varepsilon+2\sqrt{1-\varepsilon}}+i\sqrt{-2+3\varepsilon+2\sqrt{1-\varepsilon}}\right)}{16\sqrt{1-\varepsilon}}.$$

Substituting $p = 2\sqrt{1-\varepsilon}$ (then $\varepsilon \in [0, \frac{8}{9}]$ iff $p \in [\frac{2}{3}, 2]$) in the above we obtain

$$f_{\varepsilon}(z_{\varepsilon}) = \frac{3\sqrt{3}}{32} \left[\sqrt{(2+p)(p-\frac{2}{3})^3} + i\sqrt{(2-p)(p+\frac{2}{3})^3} \right],$$

which completes the proof. \Box

One can define Ω_{α} also for $\alpha \in (\frac{4}{3}, 2]$. It is easily seen that if $\alpha_1 < \alpha_2 \leq 2$ then $\Omega_{\alpha_1} \subset \Omega_{\alpha_2}$. Let $G_{\alpha}, \ \alpha \in (\frac{4}{3}, 2]$ be defined analogously as for $\alpha \in (0, \frac{4}{3}]$. Certainly, for $\alpha \leq \frac{4}{3}$ we have

$$G_{\alpha} = K_{T^{(2)}}(\Omega_{\alpha}) \subset K_{T^{(2)}}(\Omega_{\frac{4}{3}}) = G_{\frac{4}{3}}.$$

From Theorem 6 we know for $\alpha \in (\frac{4}{3}, 2]$ that

$$G_{\alpha} \subset G_{\frac{4}{3}}, G_{\alpha} \neq G_{\frac{4}{3}},$$

which means

$$G_{\alpha} \subset K_{T^{(2)}}(\Omega_{\alpha}), G_{\alpha} \neq K_{T^{(2)}}(\Omega_{\alpha}).$$

The above presented argument shows that the set $K_{T^{(2)}}(\Omega_{\frac{4}{3}})$ is the largest subset of $K_{T^{(2)}}(\Delta)$ (the set $K_{T^{(2)}}(\Delta)$ is still unknown) which one can compute applying the method of the envelope.

Список литературы

- Asnevic I. On the regions of values which have Stieltjes integral representation / I. Asnevic, G. V. Ulina // Vestn. Leningr. Univ. N 11. (1955). P. 31–45. (Russian).
- [2] Golusin G. On Typically-Real Functions / G. Golusin // Mat. Sb. 27(69). (1950) P. 201–218. (Russian).
- Koczan L. On typically real functions with n-fold symmetry / L. Koczan, P. Zaprawa // Ann. Univ. Mariae Curie Skłodowska Sect.A (1998) V. LII.
 P. 103–112.
- Koczan L. Domains of univalence for typically-real odd functions / L. Koczan, P. Zaprawa // Complex Variables. (2003). V. 48. N. 1 P. 1–17.
- Koczan L. Covering problems in the class of typically real functions / L. Koczan, P. Zaprawa // Ann. Univ. Mariae Curie Sklodowska Sect.A. (to appear).

Department of Applied Mathematics, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland E-mail: l.koczan@pollub.pl E-mail: p.zaprawa@pollub.pl